\(\frac{{38 \times 38 \times 38 + 34 \times 34 \times 34 + 28 \times 28 \times 28 - 38 \times 34 \times 84}}{{38 \times 38 + 34 \times 34 + 28 \times 28 - 38 \times 34 - 34 \times 28 - 38 \times 28}}\) is equal to = ?
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
If \(\left( {x + \frac{1}{x}} \right) = 3,\) then \(\left( {{x^2} + \frac{1}{{{x^2}}}} \right)\) is = ?
Solution |
2
Discuss
|
Given that |
3
Discuss
|
\(\sqrt {\frac{{{{\left( {0.03} \right)}^2} + {{\left( {0.21} \right)}^2} + {{\left( {0.065} \right)}^2}}}{{{{\left( {0.003} \right)}^2} + {{\left( {0.021} \right)}^2} + {{\left( {0.0065} \right)}^2}}}}\)
Solution |
4
Discuss
|
If \(\sqrt {{ \text{4096}}}\) = 64, then the value of \(\sqrt {{ \text{40}}{ \text{.96}}}\) + \(\sqrt {{ \text{0}}{ \text{.4096}}}\) + \(\sqrt {{ \text{0}}{ \text{.004096}}}\) + \(\sqrt {{ \text{0}}{ \text{.00004096}}}\) up to two place of decimals is = ?
Solution |
5
Discuss
|
\(\frac{{{{\left( {a - b} \right)}^2} - {{\left( {a + b} \right)}^2}}}{{ - 4a}}{ \text{ = }}\frac{x}{y}\) On simplifying the given equations, which of the following equations will be obtained ?
Solution |
6
Discuss
|
(98764 + 89881 + 99763 + 66342) ÷ (1186 + ? + 1040 + 1870) = 55
Solution |
7
Discuss
|
Find the value of \(\frac{{{{\left( {0.75} \right)}^3}}}{{1 - 0.75}} + \left[ {0.75 + {{\left( {0.75} \right)}^2} + 1} \right]\)
Solution |
8
Discuss
|
Supply the two missing figures in order indicated by x and y in the given equation, the fractions being in their lowest terms.
Solution |
9
Discuss
|
The simplification of \(\left( {\frac{{75983 \times 75983 - 45983 \times 45983}}{{30000}}} \right)\)yields the result = ?
Solution |
10
Discuss
|
\(\frac{{{{\left( {3\frac{2}{3}} \right)}^2} - {{\left( {2\frac{1}{2}} \right)}^2}}}{{{{\left( {4\frac{3}{4}} \right)}^2} - {{\left( {3\frac{1}{3}} \right)}^2}}}\div\frac{{3\frac{2}{3} - 2\frac{1}{2}}}{{4\frac{3}{4} - 3\frac{1}{3}}}\) = ?
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved