Let 0 < x < 1, then the correct inequality is = ?
\(x < \sqrt x < {x^2}\)
\(\sqrt x < x < {x^2}\)
\({x^2} < x < \sqrt x \)
\(\sqrt x < {x^2} < x\)
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
The square root of \(\frac{{0.342 \times 0.684}}{{0.000342 \times 0.000171}} = ?\)
Solution |
2
Discuss
|
4848 / 24 * 11 - 222 = ?
Solution |
3
Discuss
|
\({ \text{If }}\left[ {4 - \frac{5}{{1 + \frac{1}{{3 + \frac{1}{{2 + \frac{1}{4}}}}}}}} \right]\) \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Solution |
4
Discuss
|
The cost of 5 pendants and 8 chains is Rs. 145785. What would be the cost of 15 pendants and 24 chains ?
Solution |
5
Discuss
|
The value of \(\frac{{{{\left( {x - y} \right)}^3} + {{\left( {y - z} \right)}^3} + {{\left( {z - x} \right)}^3}}}{{{{\left( {{x^2} - {y^2}} \right)}^3} + {{\left( {{y^2} - {z^2}} \right)}^3} + {{\left( {{z^2} - {x^2}} \right)}^3}}}\) is = ?
Solution |
6
Discuss
|
If \(\left( {x - \frac{1}{x}} \right){ \text{ = }}\sqrt {21} { \text{,}} \) then the value of \(\left( {{x^2} + \frac{1}{{{x^2}}}} \right) \left( {x + \frac{1}{x}} \right)\) is = ?
Solution |
7
Discuss
|
\(\frac{{{{\left( {a - b} \right)}^2} - {{\left( {a + b} \right)}^2}}}{{ - 4a}}{ \text{ = }}\frac{x}{y}\) On simplifying the given equations, which of the following equations will be obtained ?
Solution |
8
Discuss
|
Simplify : \({ \text{10}}\frac{1}{8}{ \text{ of }}\frac{{12}}{{15}} \div \frac{{35}}{{36}}{ \text{ of }}\frac{{20}}{{49}}\)
Solution |
9
Discuss
|
If \(\left( {a + \frac{1}{a}} \right) = 6, then \left( {{a^4} + \frac{1}{{{a^4}}}} \right)\) = ?
Solution |
10
Discuss
|
The value of \(\frac{{25 - 5\left[ {2 + 3\left\{ {2 - 2\left( {5 - 3} \right) + 5} \right\} - 10} \right]}}{4} = ?\)
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved