Let 0 < x < 1, then the correct inequality is = ?
\(x < \sqrt x < {x^2}\)
\(\sqrt x < x < {x^2}\)
\({x^2} < x < \sqrt x \)
\(\sqrt x < {x^2} < x\)
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
Simplify : \({{{5 \over 3} \times {7 \over {51}}{ \text{ of }}{{17} \over 5} - {1 \over 3}} \over {{2 \over 9} \times {5 \over 7}{ \text{ of }}{{28} \over 5} - {2 \over 3}}}\)
Solution |
2
Discuss
|
\({ \text{If }}\left( {{n^r} - tn + \frac{1}{4}} \right)\) be a perfect square, then the values of t are = ?
Solution |
3
Discuss
|
\(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{7} + \frac{1}{{14}} + \frac{1}{{28}}\) is equal to = ?
Solution |
4
Discuss
|
What number must be added to the expression 16a2 - 12a to make a perfect square ?
Solution |
5
Discuss
|
Simplification of \(\frac{{{{\left( {3.4567} \right)}^2} - {{\left( {3.4533} \right)}^2}}}{{0.0034}} = ?\)
Solution |
6
Discuss
|
If \(\left( {x - \frac{1}{x}} \right){ \text{ = }}\sqrt {21} { \text{,}} \) then the value of \(\left( {{x^2} + \frac{1}{{{x^2}}}} \right) \left( {x + \frac{1}{x}} \right)\) is = ?
Solution |
7
Discuss
|
\(\left\{ {\left( {64 - 38} \right) \times 4} \right\} \div 13 = ?\)
Solution |
8
Discuss
|
If the expression \({ \text{2}}\frac{1}{2}{ \text{ of }}\frac{3}{4} \times \frac{1}{2} \div \frac{3}{2} + \frac{1}{2} \div \frac{3}{2}\left[ {\frac{2}{3} - \frac{1}{2}{ \text{ of }}\frac{2}{3}} \right]\) is simplified, we get -
Solution |
9
Discuss
|
Simplify : \(\root 3 \of { - 2197} \,\times \) \(\root 3 \of { - 125} \,\,\div \) \(\root 3 \of {\frac{{27}}{{512}}} \) = ?
Solution |
10
Discuss
|
If 12 + 22 + 32 + . . . . . + p2 = \(\left[ {\frac{{{ \text{p}}\left( {{ \text{p}} + 1} \right)\left( {2{ \text{p}} + 1} \right)}}{6}} \right]{ \text{,}}\) then 12 + 32 + 52 + . . . . . + 172 is = ?
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved