Quiz Discussion

The 3rd and 6th term of an arithmetic progression are 13 and -5 respectively. What is the 11th term?

Course Name: Quantitative Aptitude

  • 1] -29
  • 2] -41
  • 3] -47
  • 4] -35
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

If the 3rd and the 5th term of an arithmetic progression are 13 and 21, what is the 13th term?

  • 1] 53
  • 2] 49
  • 3] 57
  • 4] 61
Solution
2
Discuss

The common difference of the A.P. \(\frac{1}{{2b}} \frac{{1 - 6b}}{{2b}}  \frac{{1 - 12b}}{{2b}}\)   . . . . . is

 

  • 1] 2b
  • 2] -2b
  • 3] 3
  • 4] -3
Solution
3
Discuss

If sum of n terms of an A.P. is 3n2 + 5n and Tm = 164 then m =

  • 1]

    26

  • 2]

    27

  • 3]

    28

  • 4]

    None Of This

Solution
4
Discuss

If the sum of n terms of an A.P. be 3n2 + n and its common difference is 6, then its first term is

  • 1] 2
  • 2] 3
  • 3] 1
  • 4] 4
Solution
5
Discuss

Sum of n terms of the series \(\sqrt 2   +   \sqrt 8   +   \sqrt {18}   +   \sqrt {32}   +  \) ....... is

 

  • 1]

    \(\frac{{n\left( {n + 1} \right)}}{2}\)

  • 2]

    \(2n\left( {n + 1} \right)\)

  • 3]

    \(\frac{{n\left( {n + 1} \right)}}{{\sqrt 2 }}\)

  • 4]

    1

Solution
6
Discuss

In an A.P., if d = -4, n = 7, an = 4, then a is

  • 1] 6
  • 2] 7
  • 3] 20
  • 4] 28
Solution
7
Discuss

A boy agrees to work at the rate of one rupee on the first day, two rupees on the second day, and four rupees on third day and so on. How much will the boy get if he started working on the 1st of February and finishes on the 20th of February?

  • 1] 220
  • 2] 220 -1
  • 3] 219 -1
  • 4] 219
  • 5] None of these
Solution
8
Discuss

The sum of the first 16 terms of an AP whose first term and third term are 5 and 15 respectively is

  • 1] 600
  • 2] 765
  • 3] 640
  • 4] 680
  • 5] 690
Solution
9
Discuss

(1) + (1 + 1) + (1 + 1 + 1) + ....... + (1 + 1 + 1 + ...... n - 1 times) = ......

  • 1]

    \(\frac{{n\left( {n + 1} \right)}}{2}\)

  • 2]

    \(\frac{{n\left( {n - 1} \right)}}{2}\)

  • 3]

    \({n^2}\)

  • 4]

    n

Solution
10
Discuss

If the sum of three consecutive terms of an increasing A.P. is 51 and the product of the first and third of these terms is 273, then the third term is :

  • 1] 13
  • 2] 9
  • 3] 21
  • 4] 17
Solution
# Quiz