Quiz Discussion

If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of (p + q) terms will be

Course Name: Quantitative Aptitude

  • 1] 0
  • 2] p - q
  • 3] p + q
  • 4] -(p + q)
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

If k, 2k – 1 and 2k + 1 are three consecutive terms of an AP, the value of k is

 

  • 1]

    -2

  • 2]

    -3

  • 3]

    2

  • 4]

    3

Solution
2
Discuss

The first term of an Arithmetic Progression is 22 and the last term is -11. If the sum is 66, the number of terms in the sequence are:

  • 1]

    9

  • 2]

    10

  • 3]

    11

  • 4]

    12

Solution
3
Discuss

The sum of the first and third term of an arithmetic progression is 12 and the product of first and second term is 24, then first term is

  • 1]

    4

  • 2]

    1

  • 3]

    8

  • 4]

    6

Solution
4
Discuss

How many terms are there in the GP 5, 20, 80, 320........... 20480?

  • 1] 5
  • 2] 6
  • 3] 8
  • 4] 9
  • 5] 7
Solution
5
Discuss

The sum of first n odd natural numbers in

  • 1] 2n - 1
  • 2] 2n + 1
  • 3] n2
  • 4] n2 - 1
Solution
6
Discuss

If the sum of n terms of an A.P. is 3n2 + 5n then which of its terms is 164 ?

  • 1] 26th
  • 2] 27th
  • 3] 28th
  • 4] None of these
Solution
7
Discuss

If S1 is the sum of an arithmetic progression of ‘n’ odd number of terms and S2 is the sum of the terms of the series in odd places, then \(\frac{{{S_1}}}{{{S_2}}}\)

 

  • 1]

    \(\frac{{2n}}{{n + 1}}\)

  • 2]

    \(\frac{n}{{n + 1}}\)

  • 3]

    \(\frac{{n + 1}}{{2n}}\)

  • 4]

    \(\frac{{n - 1}}{n}\)

Solution
8
Discuss

(1) + (1 + 1) + (1 + 1 + 1) + ....... + (1 + 1 + 1 + ...... n - 1 times) = ......

  • 1]

    \(\frac{{n\left( {n + 1} \right)}}{2}\)

  • 2]

    \(\frac{{n\left( {n - 1} \right)}}{2}\)

  • 3]

    \({n^2}\)

  • 4]

    n

Solution
9
Discuss

If log 2, log (2x -1) and log (2x + 3) are in A.P, then x is equal to ___

  • 1]

     

    5/2

  • 2]

    log25

  • 3]

    log32

  • 4]

     

    3/2

Solution
10
Discuss

If the sums of n terms of two arithmetic progressions are in the ratio \(\frac{{3n + 5}}{{5n + 7}}\)   then their nth terms are in the ration

 

  • 1]

    \(\frac{{3n - 1}}{{5n - 1}}\)

  • 2]

    \(\frac{{3n + 1}}{{5n + 1}}\)

  • 3]

    \(\frac{{5n + 1}}{{3n + 1}}\)

  • 4]

    \(\frac{{5n - 1}}{{3n - 1}}\)

Solution
# Quiz