Quiz Discussion

The 3rd and 8th term of an arithmetic progression are -13 and 2 respectively. What is the 14th term?

Course Name: Quantitative Aptitude

  • 1] 23
  • 2] 17
  • 3] 20
  • 4] 26
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

Sum of n terms of the series \(\sqrt 2   +   \sqrt 8   +   \sqrt {18}   +   \sqrt {32}   +  \) ....... is

 

  • 1]

    \(\frac{{n\left( {n + 1} \right)}}{2}\)

  • 2]

    \(2n\left( {n + 1} \right)\)

  • 3]

    \(\frac{{n\left( {n + 1} \right)}}{{\sqrt 2 }}\)

  • 4]

    1

Solution
2
Discuss

If the 7th term of a H.P. is 1/10 and the 12th term is 1/25, then the 20th term is

  • 1]

    1/41

  • 2]

    1/45

  • 3]

    1/49

  • 4]

    1/37

Solution
3
Discuss

The sum of first five multiples of 3 is:

 

  • 1]

    90

  • 2]

    72

  • 3]

    55

  • 4]

    45

Solution
4
Discuss

Which term of the A.P. 92, 88, 84, 80, ...... is 0?

  • 1]

    23

  • 2]

    32

  • 3]

    24

  • 4]

    28

Solution
5
Discuss

The number of terms of the A.P. 3, 7, 11, 15, ....... to be taken so that the sum is 406 is

  • 1]

    5

  • 2]

    10

  • 3]

    12

  • 4]

    14

Solution
6
Discuss

If log 2, log (2x -1) and log (2x + 3) are in A.P, then x is equal to ___

  • 1]

     

    5/2

  • 2]

    log25

  • 3]

    log32

  • 4]

     

    3/2

Solution
7
Discuss

What is the sum of the first 9 terms of an arithmetic progression if the first term is 7 and last term is 55?

  • 1] 219
  • 2] 279
  • 3] 231
  • 4] 137
Solution
8
Discuss

The sum of first five multiples of 3 is:

  • 1] 45
  • 2] 65
  • 3] 75
  • 4] 90
Solution
9
Discuss

The sum of the first and third term of an arithmetic progression is 12 and the product of first and second term is 24, then first term is

  • 1]

    4

  • 2]

    1

  • 3]

    8

  • 4]

    6

Solution
10
Discuss

Find the nth term of the following sequence :

  • 1]

    5(10n - 1)

  • 2]

    5n(10n - 1)

  • 3]

    \(\frac{5}{9} \times \left( {{{10}^n} - 1} \right)\)

  • 4]

    \({\left( {\frac{5}{9}} \right)^n} \times \left( {{{10}^n} - 1} \right)\)

Solution
# Quiz