R is a positive number. It is multiplied by 8 and then squared. The square is now divided by 4 and the square root is taken. The result of the square root is Q. What is the value of Q ?
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
\(\sqrt {110.25} \times \sqrt {0.01} \div \) \(\sqrt {0.0025}\) - \(\sqrt {420.25}\) equals ?
Solution |
2
Discuss
|
In the equation \(\frac{{4050}}{{\sqrt x }} = 450{ \text{}}\) the value of x is = ?
Solution |
3
Discuss
|
Given that \(\sqrt {13} = 3.605\) and \(\sqrt {130} = 11.40\) . find the value of \(\sqrt {1.30} \) + \(\sqrt {1300}\) + \(\sqrt {0.0130} \) = ?
Solution |
4
Discuss
|
\(99 \times 21 - \root 3 \of ? = 1968\)
Solution |
5
Discuss
|
\({1.5^2} \times \sqrt {0.0225} = ?\)
Solution |
6
Discuss
|
If \(3a = 4b = 6c \) and \(a + b + c = 27\sqrt {29} { \text{,}} \) then\( \sqrt {{a^2} + {b^2} + {c^2}} \)is ?
Solution |
7
Discuss
|
\( \root 3 \of {\sqrt {0.000064} } = ?\)
Solution |
8
Discuss
|
\(\sqrt {\frac{{25}}{{81}} - \frac{1}{9}} = ?\)
Solution |
9
Discuss
|
Determined the value of \(\frac{1}{{\sqrt 1 + \sqrt 2 }}{ \text{ + }} \frac{1}{{\sqrt 2 + \sqrt 3 }} + \frac{1}{{\sqrt 3 + \sqrt 4 }} + ...... + \frac{1}{{\sqrt {120} + \sqrt {121} }}{ \text{ = ?}}\)
Solution |
10
Discuss
|
If a = 0.1039, then the value of \(\sqrt {4{a^2} - 4a + 1} + 3a\) is:
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved