If \(a = \frac{{\sqrt 3 }}{2}{ \text{}}\) then \(\sqrt {1 + a} + \sqrt {1 - a} = ?\)
\(\left( {2 - \sqrt 3 } \right)\)
\(\left( {2 + \sqrt 3 } \right)\)
\(\left( {\frac{{\sqrt 3 }}{2}} \right)\)
\(\sqrt 3 \)
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
| # | Quiz |
|---|---|
|
1
Discuss
|
What is the least number to be added to 7700 to make it a perfect square ?
Solution |
|
2
Discuss
|
The square root of 64009 is:
Solution |
|
3
Discuss
|
Given \(\sqrt 2 = 1.414.\) Then the value of \(\sqrt 8\) + \(2\sqrt {32} \) - \(3\sqrt {128}\) + \(4\sqrt {50}\) is = ?
Solution |
|
4
Discuss
|
The square root of \(\left( {7 + 3\sqrt 5 } \right) \left( {7 - 3\sqrt 5 } \right)\) is
Solution |
|
5
Discuss
|
If \(\sqrt {24} = 4.889,\) the value of \(\sqrt {\frac{8}{3}} \) is = ?
Solution |
|
6
Discuss
|
The square root of 535.9225 is = ?
Solution |
|
7
Discuss
|
\(\sqrt {\frac{{16}}{{25}}} \times \sqrt {\frac{?}{{25}}} \times \frac{{16}}{{25}} = \frac{{256}}{{625}}\)
Solution |
|
8
Discuss
|
How many perfect squares lie between 120 and 300 ?
Solution |
|
9
Discuss
|
If \(\sqrt 2 = 1.414{ \text{,}} \) the square root of \(\frac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}\) is nearest to = ?
Solution |
|
10
Discuss
|
Solved \( \root 4 \of {{{\left( {625} \right)}^3}} = ?\)
Solution |
| # | Quiz |
Copyright © 2020 Inovatik - All rights reserved