Quiz Discussion

By what least number 4320 be multiplied to obtain a number which is a perfect cube?

Course Name: Quantitative Aptitude

  • 1]

    35

  • 2]

    48

  • 3]

    50

  • 4]

    62

Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

The square root of \(\frac{{{{\left( {0.75} \right)}^3}}}{{1 - 0.75}} { \text{ + }}\left[ {0.75 + {{\left( {0.75} \right)}^2} + 1} \right]\)    is = ?

 

  • 1] 1
  • 2] 2
  • 3] 3
  • 4] 4
Solution
2
Discuss

The number of perfect square numbers between 50 and 1000 is = ?

  • 1] 21
  • 2] 22
  • 3] 23
  • 4] 24
Solution
3
Discuss

If 1537* is a perfect square, then the digit which replace * is = ?

  • 1] 2
  • 2] 4
  • 3] 5
  • 4] 6
Solution
4
Discuss

What should come in place of both the question marks in the equation x/√128 = √162/x ?

  • 1] 12
  • 2] 14
  • 3] 144
  • 4] 196
Solution
5
Discuss

\(\left( {\frac{{\sqrt {625} }}{{11}} \times \frac{{14}}{{\sqrt {25} }} \times \frac{{11}}{{\sqrt {196} }}} \right){\kern 1pt} \)     is equal to :

 

  • 1] 5
  • 2] 6
  • 3] 8
  • 4] 11
Solution
6
Discuss

How many two-digit numbers satisfy this property. : The last digit (unit's digit) of the square of the two-digit number is 8 ?

  • 1] 1
  • 2] 2
  • 3] 3
  • 4] None of these
Solution
7
Discuss

If \(\sqrt y = 4x{ \text{}}   \) then \(\frac{{{x^2}}}{y}\) is = ?

 

  • 1]

    2

  • 2]

    1/16

  • 3]

    1/4

  • 4]

    4

Solution
8
Discuss

\(\sqrt {\sqrt {17956} + \sqrt {24025} } = ?\)

 

  • 1] 19
  • 2] 155
  • 3] 256
  • 4] 289
  • 5] None of these
Solution
9
Discuss

The square root of \(\left( {7 + 3\sqrt 5 } \right)  \left( {7 - 3\sqrt 5 } \right)\)   is

 

  • 1]

    \(\sqrt 5 \)

  • 2]

    2

  • 3]

    4

  • 4]

    \(3\sqrt 5 \)

Solution
10
Discuss

If \(a = \frac{{\sqrt 3 }}{2}{ \text{}}\)   then \(\sqrt {1 + a} + \sqrt {1 - a} = ?\)

 

  • 1]

    \(\left( {2 - \sqrt 3 } \right)\)

  • 2]

    \(\left( {2 + \sqrt 3 } \right)\)

  • 3]

    \(\left( {\frac{{\sqrt 3 }}{2}} \right)\)

  • 4]

    \(\sqrt 3 \)

Solution
# Quiz