Quiz Discussion

\({\left[ {{{\left( {\sqrt {81} } \right)}^2}} \right]^2} = {\left( ? \right)^2}\)

 

Course Name: Quantitative Aptitude

  • 1] 8
  • 2] 9
  • 3] 4096
  • 4] 6561
  • 5] None of these
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

The value of     is ?

 

  • 1]

    0.1

  • 2]

    10

  • 3]

    \({10^2}\)

  • 4]

    \({10^3}\)

Solution
2
Discuss

What should come in place of both the question marks in the equation x/√128 = √162/x ?

  • 1] 12
  • 2] 14
  • 3] 144
  • 4] 196
Solution
3
Discuss

\(99 \times 21 - \root 3 \of ? = 1968\)

 

  • 1] 1367631
  • 2] 111
  • 3] 1366731
  • 4] 1367
Solution
4
Discuss

A man born in the first half of the nineteenth century was x years old in the year x2. He was born in ?

  • 1] 1806
  • 2] 1812
  • 3] 1825
  • 4] 1836
Solution
5
Discuss

Given that \(\sqrt {13} = 3.605\)   and \(\sqrt {130} = 11.40\)  . find the value of \(\sqrt {1.30} \)  + \(\sqrt {1300}\)  + \(\sqrt {0.0130} \)   = ?

 

  • 1] 36.164
  • 2] 36.304
  • 3] 37.164
  • 4] 37.304
Solution
6
Discuss

If \(3\sqrt 5 + \sqrt {125} \)   = 17.88, then what will be the value of \(\sqrt {80} + 6\sqrt 5 ?\)

 

  • 1] 13.41
  • 2] 20.46
  • 3] 21.66
  • 4] 22.35
Solution
7
Discuss

If \(\sqrt {33} = 5.745{ \text{}}\)   then which of the following values is approximately \(\sqrt {\frac{3}{{11}}} { \text{ ?}}\)

 

  • 1] 1
  • 2] 6.32
  • 3] 0.5223
  • 4] 2.035
Solution
8
Discuss

\({\left( {\sqrt 3 - \frac{1}{{\sqrt 3 }}} \right)^2}\) simplifies to:

  • 1]

    3/4

  • 2]

    \(\frac{4}{{\sqrt 3 }}\)

  • 3]

    4/3

  • 4]

    None of these

Solution
9
Discuss

\(\sqrt {0.2} = ?\)

 

  • 1] 0.02
  • 2] 0.2
  • 3] 0.447
  • 4] 0.632
Solution
10
Discuss

The smallest natural number which is a perfect square and which ends in 3 identical digits lies between ?

  • 1] 1000 and 2000
  • 2] 2000 and 3000
  • 3] 3000 and 4000
  • 4] 4000 and 5000
Solution
# Quiz