Quiz Discussion

  is equal to ?

 

Course Name: Quantitative Aptitude

  • 1] 0.9
  • 2] 0.99
  • 3] 9
  • 4] 99
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

Given that \(\sqrt 3 = 1.732{ \text{,}}   \)  the value of \(\frac{{3 + \sqrt 6 }}{{5\sqrt 3 - 2\sqrt {12} - \sqrt {32} + \sqrt {50} }}\)    is ?

 

  • 1] 1.414
  • 2] 1.732
  • 3] 2.551
  • 4] 4.899
Solution
2
Discuss

\(\sqrt {1.5625} = ?\)

 

  • 1] 1.05
  • 2] 1.25
  • 3] 1.45
  • 4] 1.55
Solution
3
Discuss

If a = 0.1039, then the value of \(\sqrt {4{a^2} - 4a + 1} + 3a\)     is:

 

  • 1] 0.1039
  • 2] 0.2078
  • 3] 1.1039
  • 4] 2.1039
Solution
4
Discuss

The least number of 4 digits which is a perfect square is = ?

  • 1] 1000
  • 2] 1016
  • 3] 1024
  • 4] 1036
Solution
5
Discuss

Given that \(\sqrt {13} = 3.605\)   and \(\sqrt {130} = 11.40\)  . find the value of \(\sqrt {1.30} \)  + \(\sqrt {1300}\)  + \(\sqrt {0.0130} \)   = ?

 

  • 1] 36.164
  • 2] 36.304
  • 3] 37.164
  • 4] 37.304
Solution
6
Discuss

What is the smallest number by which 3600 be divided to make it a perfect cube ?

  • 1] 9
  • 2] 50
  • 3] 300
  • 4] 450
Solution
7
Discuss

The number of perfect square numbers between 50 and 1000 is = ?

  • 1] 21
  • 2] 22
  • 3] 23
  • 4] 24
Solution
8
Discuss

If \(a = \frac{{\sqrt 3 }}{2}{ \text{}}\)   then \(\sqrt {1 + a} + \sqrt {1 - a} = ?\)

 

  • 1]

    \(\left( {2 - \sqrt 3 } \right)\)

  • 2]

    \(\left( {2 + \sqrt 3 } \right)\)

  • 3]

    \(\left( {\frac{{\sqrt 3 }}{2}} \right)\)

  • 4]

    \(\sqrt 3 \)

Solution
9
Discuss

\(\frac{1}{{\left( {\sqrt 9 - \sqrt 8 } \right)}} -   \frac{1}{{\left( {\sqrt 8 - \sqrt 7 } \right)}} +   \frac{1}{{\left( {\sqrt 7 - \sqrt 6 } \right)}} -   \frac{1}{{\left( {\sqrt 6 - \sqrt 5 } \right)}} +   \frac{1}{{\left( {\sqrt 5 - \sqrt 4 } \right)}}\)   is equal to ?

 

  • 1]

    0

  • 2]

    1/3

  • 3]

    1

  • 4]

    5

Solution
10
Discuss

The approximate value of \(\frac{{3\sqrt {12} }}{{2\sqrt {28} }} \div \frac{{2\sqrt {21} }}{{\sqrt {98} }}\)  is ?

 

  • 1] 1.0605
  • 2] 1.0727
  • 3] 1.6007
  • 4] 1.6026
Solution
# Quiz