Quiz Discussion

  is equal to ?

 

Course Name: Quantitative Aptitude

  • 1] 0.9
  • 2] 0.99
  • 3] 9
  • 4] 99
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

The number of perfect square numbers between 50 and 1000 is = ?

  • 1] 21
  • 2] 22
  • 3] 23
  • 4] 24
Solution
2
Discuss

If \(\sqrt 6 = 2.449{ \text{,}}\)   then the value of \(\frac{{3\sqrt 2 }}{{2\sqrt 3 }}\)   is = ?

 

  • 1] 0.6122
  • 2] 0.8163
  • 3] 1.223
  • 4] 1.2245
Solution
3
Discuss

If \(\sqrt y = 4x{ \text{}}   \) then \(\frac{{{x^2}}}{y}\) is = ?

 

  • 1]

    2

  • 2]

    1/16

  • 3]

    1/4

  • 4]

    4

Solution
4
Discuss

The least number of 4 digits which is a perfect square is = ?

  • 1] 1000
  • 2] 1016
  • 3] 1024
  • 4] 1036
Solution
5
Discuss

The value of \(\sqrt {0.000441} \)  is = ?

 

  • 1] 0.00021
  • 2] 0.0021
  • 3] 0.021
  • 4] 0.21
Solution
6
Discuss

If the product of four consecutive natural numbers increased by a natural number p, is a perfect square, then the value of p is = ?

  • 1] 1
  • 2] 2
  • 3] 4
  • 4] 8
Solution
7
Discuss

Determined the value of \(\frac{1}{{\sqrt 1 + \sqrt 2 }}{ \text{ + }}  \frac{1}{{\sqrt 2 + \sqrt 3 }} +   \frac{1}{{\sqrt 3 + \sqrt 4 }} +   ...... +   \frac{1}{{\sqrt {120} + \sqrt {121} }}{ \text{ = ?}}\)

 

  • 1]

    8

  • 2]

    10

  • 3]

    \(\sqrt {120} \)

  • 4]

    \(12\sqrt 2 \)

Solution
8
Discuss

Which number can replace both the question marks in the equation =?

 

  • 1]

    12

  • 2]

    7

  • 3]

  • 4]

    None of these

Solution
9
Discuss

\({1.5^2} \times \sqrt {0.0225} = ?\)

 

  • 1] 0.0375
  • 2] 0.3375
  • 3] 3.275
  • 4] 32.75
Solution
10
Discuss

The value of \({ \text{ }} \root 3 \of {\frac{{0.2 \times 0.2 \times 0.2 + 0.04 \times 0.04 \times 0.04}}{{0.4 \times 0.4 \times 0.4 + 0.08 \times 0.08 \times 0.08}}} \)        is ?

 

  • 1] 0.125
  • 2] 0.25
  • 3] 0.5
  • 4] 0.75
Solution
# Quiz