Quiz Discussion

Find the nth term of the following sequence :

Course Name: Quantitative Aptitude

  • 1]

    5(10n - 1)

  • 2]

    5n(10n - 1)

  • 3]

    \(\frac{5}{9} \times \left( {{{10}^n} - 1} \right)\)

  • 4]

    \({\left( {\frac{5}{9}} \right)^n} \times \left( {{{10}^n} - 1} \right)\)

Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

If 18th and 11th term of an A.P. are in the ratio 3 : 2, then its 21st and 5th terms are in the ratio

  • 1] 3 : 2
  • 2] 3 : 1
  • 3] 1 : 3
  • 4] 2 : 3
Solution
2
Discuss

The sum of the first and third term of an arithmetic progression is 12 and the product of first and second term is 24, then first term is

  • 1]

    4

  • 2]

    1

  • 3]

    8

  • 4]

    6

Solution
3
Discuss

If the sum of n terms of an A.P. is 3n2 + 5n then which of its terms is 164 ?

  • 1] 26th
  • 2] 27th
  • 3] 28th
  • 4] None of these
Solution
4
Discuss

After striking the floor, a rubber ball rebounds to 4/5th of the height from which it has fallen. Find the total distance that it travels before coming to rest if it has been gently dropped from a height of 120 metres.

  • 1] 540 m
  • 2] 960 m
  • 3] 1080 m
  • 4] 1020 m
  • 5] 1120 m
Solution
5
Discuss

If a + 1, 2a + 1, 4a - 1 are in A.P., then the value of a is:

  • 1] 1
  • 2] 2
  • 3] 3
  • 4] 4
Solution
6
Discuss

The number of terms of the A.P. 3, 7, 11, 15, ....... to be taken so that the sum is 406 is

  • 1]

    5

  • 2]

    10

  • 3]

    12

  • 4]

    14

Solution
7
Discuss

The first term of an Arithmetic Progression is 22 and the last term is -11. If the sum is 66, the number of terms in the sequence are:

  • 1] 10
  • 2] 12
  • 3] 9
  • 4] 8
Solution
8
Discuss

If the first term of an A.P. is 2 and common difference is 4, then the sum of its 40 term is

  • 1] 3200
  • 2] 1600
  • 3] 200
  • 4] 2800
Solution
9
Discuss

(1) + (1 + 1) + (1 + 1 + 1) + ....... + (1 + 1 + 1 + ...... n - 1 times) = ......

  • 1]

    \(\frac{{n\left( {n + 1} \right)}}{2}\)

  • 2]

    \(\frac{{n\left( {n - 1} \right)}}{2}\)

  • 3]

    \({n^2}\)

  • 4]

    n

Solution
10
Discuss

For A.P. T18 - T8 = ........ ?

  • 1] d
  • 2] 10d
  • 3] 26d
  • 4] 2d
Solution
# Quiz