Quiz Discussion

The 2nd and 6th term of an arithmetic progression are 8 and 20 respectively. What is the 20th term?

Course Name: Quantitative Aptitude

  • 1] 56
  • 2] 65
  • 3] 59
  • 4] 62
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

If log 2, log (2x -1) and log (2x + 3) are in A.P, then x is equal to ___

  • 1]

     

    5/2

  • 2]

    log25

  • 3]

    log32

  • 4]

     

    3/2

Solution
2
Discuss

The 7th and 21st terms of an AP are 6 and -22 respectively. Find the 26th term

  • 1] -34
  • 2] -32
  • 3] -12
  • 4] -10
  • 5] -16
Solution
3
Discuss

Consider an infinite G.P. with first term a and common ratio r, its sum is 4 and the second term is 3/4, then

  • 1]

    a = 7/4, r = 3/7

  • 2]

    a = 2, r = 3/8

  • 3]

    a = 3, r = 1/4

  • 4]

    a = 3/2, r = ½

Solution
4
Discuss

The 4th and 7th term of an arithmetic progression are 11 and -4 respectively. What is the 15th term?

  • 1] -49
  • 2] -44
  • 3] -39
  • 4] -34
Solution
5
Discuss

If 18, a, b - 3 are in A.P. then a + b =

  • 1] 19
  • 2] 7
  • 3] 11
  • 4] 15
Solution
6
Discuss

In an A.P., if d = -4, n = 7, an = 4, then a is

  • 1]

    6

  • 2]

    7

  • 3]

    20

  • 4]

    28

Solution
7
Discuss

The 3rd and 7th term of an arithmetic progression are -9 and 11 respectively. What is the 15th term?

  • 1]

    28

  • 2]

    87

  • 3]

    51

  • 4]

    17

Solution
8
Discuss

If the sums of n terms of two arithmetic progressions are in the ratio \(\frac{{3n + 5}}{{5n + 7}}\)   then their nth terms are in the ration

 

  • 1]

    \(\frac{{3n - 1}}{{5n - 1}}\)

  • 2]

    \(\frac{{3n + 1}}{{5n + 1}}\)

  • 3]

    \(\frac{{5n + 1}}{{3n + 1}}\)

  • 4]

    \(\frac{{5n - 1}}{{3n - 1}}\)

Solution
9
Discuss

The sum of first five multiples of 3 is:

  • 1] 45
  • 2] 65
  • 3] 75
  • 4] 90
Solution
10
Discuss

If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of (p + q) terms will be

  • 1] 0
  • 2] p - q
  • 3] p + q
  • 4] -(p + q)
Solution
# Quiz