Quiz Discussion

If 45 - [28 - {37 - (15 - *)}]  then * equal to?

 

Course Name: Quantitative Aptitude

  • 1] -29
  • 2] -19
  • 3] 19
  • 4] 29
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

The square root of \(\frac{{0.342 \times 0.684}}{{0.000342 \times 0.000171}} = ?\)

 

  • 1] 250
  • 2] 2500
  • 3] 2000
  • 4] 4000
Solution
2
Discuss

Solve \({ \text{1}}\frac{4}{5} + 20 - 280 \div 25 = ?\)

 

  • 1]

    \(8\frac{1}{5}\)

  • 2]

    \(9\frac{1}{2}\)

  • 3]

    \(11\frac{1}{2}\)

  • 4]

    \(10\frac{3}{5}\)

  • 5]

    \(12\frac{1}{5}\)

Solution
3
Discuss

\(\frac{{{{\left( {469 + 174} \right)}^2} - {{\left( {469 - 174} \right)}^2}}}{{469 \times 174}} \)      = ?

 

  • 1] 2
  • 2] 4
  • 3] 295
  • 4] 643
Solution
4
Discuss

What is \(\frac{{\frac{7}{8} \times \frac{7}{8} + \frac{5}{6} \times \frac{5}{6} + \frac{7}{8} \times \frac{5}{3}}}{{\frac{7}{8} \times \frac{7}{8} - \frac{5}{6} \times \frac{5}{6}}}\)     equal to ?

 

  • 1]

    41/24

  • 2]

    1/24

  • 3]

    41

  • 4]

    None of these

Solution
5
Discuss

The value of \(\frac{{\sqrt {80} - \sqrt {112} }}{{\sqrt {45} - \sqrt {63} }} = ?\)

 

  • 1]

    3/4

  • 2]

    \(1\frac{3}{4}\)

  • 3]

    \(1\frac{1}{3}\)

  • 4]

    \(1\frac{7}{9}\)

Solution
6
Discuss

(755.0% of 523.0) / 777.0 = x

  • 1]

    6

  • 2]

    4

  • 3]

    3

  • 4]

    5

Solution
7
Discuss

The value of \(\frac{5}{{1\frac{7}{8}{ \text{of 1}}\frac{1}{3}}} \times \frac{{2\frac{1}{{10}}}}{{3\frac{1}{2}}}{ \text{ of 1}}\frac{1}{4} = ?\)

 

  • 1]

    \(1\frac{1}{2}\)

  • 2]

    0.05

  • 3]

    1

  • 4]

    2

Solution
8
Discuss

If a - b = 3 and a2 + b2 = 29, find the value of ab = ?

  • 1] 10
  • 2] 12
  • 3] 15
  • 4] 18
Solution
9
Discuss

\(\left\{ {\left( {64 - 38} \right) \times 4} \right\} \div 13 = ?\)

 

  • 1] 4
  • 2] 1
  • 3] 8
  • 4] 2
  • 5] 5
Solution
10
Discuss

\(\frac{1}{{1 + {2^{a - b}}}} + \frac{1}{{1 + {2^{b - a}}}}\)     is equal to = ?

 

  • 1] a - b
  • 2] b - a
  • 3] 1
  • 4] 0
Solution
# Quiz