Quiz Discussion

If Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn , then S3n : Sn is equal to

Course Name: Quantitative Aptitude

  • 1] 4
  • 2] 6
  • 3] 8
  • 4] 10
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

If the sum of n terms of an A.P. be 3n2 + n and its common difference is 6, then its first term is

  • 1] 2
  • 2] 3
  • 3] 1
  • 4] 4
Solution
2
Discuss

The 2nd and 6th term of an arithmetic progression are 8 and 20 respectively. What is the 20th term?

  • 1] 56
  • 2] 65
  • 3] 59
  • 4] 62
Solution
3
Discuss

The 2nd and 6th term of an arithmetic progression are 8 and 20 respectively. What is the 20th term?

  • 1]

    56

  • 2]

    62

  • 3]

    65

  • 4]

    69

Solution
4
Discuss

A boy agrees to work at the rate of one rupee on the first day, two rupees on the second day, and four rupees on third day and so on. How much will the boy get if he started working on the 1st of February and finishes on the 20th of February?

  • 1] 220
  • 2] 220 -1
  • 3] 219 -1
  • 4] 219
  • 5] None of these
Solution
5
Discuss

The 3rd and 7th term of an arithmetic progression are -9 and 11 respectively. What is the 15th term?

  • 1]

    28

  • 2]

    87

  • 3]

    51

  • 4]

    17

Solution
6
Discuss

What is the sum of all positive integers up to 1000, which are divisible by 5 and are not divisible by 2?

  • 1] 10,050
  • 2] 5050
  • 3] 5000
  • 4] 50,000
Solution
7
Discuss

Find the 15th term of the sequence 20, 15, 10 . . . . .

  • 1] -45
  • 2] -55
  • 3] -50
  • 4] 0
Solution
8
Discuss

If S1 is the sum of an arithmetic progression of ‘n’ odd number of terms and S2 is the sum of the terms of the series in odd places, then \(\frac{{{S_1}}}{{{S_2}}}\)

 

  • 1]

    \(\frac{{2n}}{{n + 1}}\)

  • 2]

    \(\frac{n}{{n + 1}}\)

  • 3]

    \(\frac{{n + 1}}{{2n}}\)

  • 4]

    \(\frac{{n - 1}}{n}\)

Solution
9
Discuss

If the nth term of an A.P. is 2n + 1, then the sum of first n terms of the A.P. is

  • 1] n(n - 2)
  • 2] n(n + 2)
  • 3] n(n + 1)
  • 4] n(n - 1)
Solution
10
Discuss

If three numbers be in G.P., then their logarithms will be in

  • 1]

    AP

  • 2]

    GP

  • 3]

    HP

  • 4]

     None Of This

Solution
# Quiz