Quiz Discussion

The nth term of an A.P., the sum of whose n terms is Sn, is

Course Name: Quantitative Aptitude

  • 1] Sn + Sn - 1
  • 2] Sn - Sn - 1
  • 3] Sn + Sn + 1
  • 4] Sn - Sn + 1
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, the number of terms is

  • 1]

    10

  • 2]

    11

  • 3]

    12

  • 4]

    13

Solution
2
Discuss

In an A.P., if d = -4, n = 7, an = 4, then a is

  • 1]

    6

  • 2]

    7

  • 3]

    20

  • 4]

    28

Solution
3
Discuss

What is the sum of the first 9 terms of an arithmetic progression if the first term is 7 and last term is 55?

  • 1] 219
  • 2] 279
  • 3] 231
  • 4] 137
Solution
4
Discuss

If the 7th term of a H.P. is 1/10 and the 12th term is 1/25, then the 20th term is

  • 1]

    1/41

  • 2]

    1/45

  • 3]

    1/49

  • 4]

    1/37

Solution
5
Discuss

The first and last term of an A.P. is a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \(\frac{{{l^2} - {a^2}}}{{k - \left( {l + a} \right)}}\)   then k = ?

 

  • 1] S
  • 2] 2S
  • 3] 3S
  • 4] None of these
Solution
6
Discuss

(1) + (1 + 1) + (1 + 1 + 1) + ....... + (1 + 1 + 1 + ...... n - 1 times) = ......

  • 1]

    \(\frac{{n\left( {n + 1} \right)}}{2}\)

  • 2]

    \(\frac{{n\left( {n - 1} \right)}}{2}\)

  • 3]

    \({n^2}\)

  • 4]

    n

Solution
7
Discuss

The 2nd and 6th term of an arithmetic progression are 8 and 20 respectively. What is the 20th term?

  • 1] 56
  • 2] 65
  • 3] 59
  • 4] 62
Solution
8
Discuss

If S1 is the sum of an arithmetic progression of ‘n’ odd number of terms and S2 is the sum of the terms of the series in odd places, then \(\frac{{{S_1}}}{{{S_2}}}\)

 

  • 1]

    \(\frac{{2n}}{{n + 1}}\)

  • 2]

    \(\frac{n}{{n + 1}}\)

  • 3]

    \(\frac{{n + 1}}{{2n}}\)

  • 4]

    \(\frac{{n - 1}}{n}\)

Solution
9
Discuss

In an A.P., if d = -4, n = 7, an = 4, then a is

  • 1] 6
  • 2] 7
  • 3] 20
  • 4] 28
Solution
10
Discuss

The first term of an Arithmetic Progression is 22 and the last term is -11. If the sum is 66, the number of terms in the sequence are:

  • 1] 10
  • 2] 12
  • 3] 9
  • 4] 8
Solution
# Quiz