Quiz Discussion

What is the sum of the first 9 terms of an arithmetic progression if the first term is 7 and last term is 55?

Course Name: Quantitative Aptitude

  • 1] 219
  • 2] 279
  • 3] 231
  • 4] 137
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, the number of terms is

  • 1]

    10

  • 2]

    11

  • 3]

    12

  • 4]

    13

Solution
2
Discuss

In an A.P., if d = -4, n = 7, an = 4, then a is

  • 1] 6
  • 2] 7
  • 3] 20
  • 4] 28
Solution
3
Discuss

Two A.P.’s have the same common difference. The first term of one of these is 8 and that of the other is 3. The difference between their 30th terms is

  • 1] 11
  • 2] 3
  • 3] 8
  • 4] 5
Solution
4
Discuss

How many 2-digit positive integers are divisible by 4 or 9?

  • 1]

    32

  • 2]

    22

  • 3]

    34

  • 4]

    30

Solution
5
Discuss

For A.P. T18 - T8 = ........ ?

  • 1] d
  • 2] 10d
  • 3] 26d
  • 4] 2d
Solution
6
Discuss

If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of (p + q) terms will be

  • 1] 0
  • 2] p - q
  • 3] p + q
  • 4] -(p + q)
Solution
7
Discuss

If the sum of three consecutive terms of an increasing A.P. is 51 and the product of the first and third of these terms is 273, then the third term is :

  • 1] 13
  • 2] 9
  • 3] 21
  • 4] 17
Solution
8
Discuss

The sum of the first 16 terms of an AP whose first term and third term are 5 and 15 respectively is

  • 1] 600
  • 2] 765
  • 3] 640
  • 4] 680
  • 5] 690
Solution
9
Discuss

If an A.P. has a = 1, tn = 20 and sn = 399, then value of n is :

  • 1] 20
  • 2] 32
  • 3] 38
  • 4] 40
Solution
10
Discuss

A bacteria gives birth to two new bacteria in each second and the life span of each bacteria is 5 seconds. The process of the reproduction is continuous until the death of the bacteria. initially there is one newly born bacteria at time t = 0, the find the total number of live bacteria just after 10 seconds :

  • 1]

    \(\frac{{{3^{10}}}}{2}\)

  • 2]

    310 - 210

  • 3]

    243 × (35 -1)

  • 4]

    310 - 25

  • 5]

    None of these

Solution
# Quiz