Quiz Discussion

If (a+b+2c+3d)(a-b-2c+3d)=(a-b+2c-3d)(a+b-2c-3d), then 2bcis equal to?

Course Name: Quantitative Aptitude

  • 1]

    3ad

  • 2]

    3ac

  • 3]

    2ad

  • 4]

    2ab

Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

If \( \left( {x + \frac{1}{x}} \right){ \text{ = }}\sqrt {13} { \text{,}} \)    then the value of \(\left( {{x^3} - \frac{1}{{{x^3}}}} \right)\)  is = ?

 

  • 1] 26
  • 2] 27
  • 3] 30
  • 4] 36
Solution
2
Discuss

Evaluated : \({{9\left| {3 - 5} \right| - 5\left| 4 \right| \div 10} \over { - 3\left( 5 \right) - 2 \times 4 \div 2}}\)

 

  • 1]

    9/10

  • 2]

    -8/17

  • 3]

    -16/19

  • 4]

    4/7

Solution
3
Discuss

\(\frac{{225}}{{836}} \times \frac{{152}}{{245}} \div 1\frac{{43}}{{77}} = ?\)

 

  • 1]

    6/49

  • 2]

    6/11

  • 3]

    3/28

  • 4]

    1/7

  • 5]

    None of these

Solution
4
Discuss

\(\left( {\frac{{785 \times 785 \times 785 + 435 \times 435 \times 435}}{{785 \times 785 + 435 \times 435 - 785 \times 435}}} \right)\)       simplifies to = ?

 

  • 1] 350
  • 2] 785
  • 3] 1220
  • 4] 1320
Solution
5
Discuss

Simplify : \(1 + {2 \over {1 + {3 \over {1 + {4 \over 5}}}}}\)

 

  • 1]

    7/4

  • 2]

    4/7

  • 3]

    7/5

  • 4]

    3/7

Solution
6
Discuss

Assume that \(\sqrt {13} \) = 3.605(approximately) and \(\sqrt {130}\)  = 11.40(approximately) Find the value of: \(\sqrt {1.3}\) + \(\sqrt {1300}\)  + \(\sqrt {0.013}\)

 

  • 1] 36.164
  • 2] 36.304
  • 3] 37.304
  • 4] 37.164
Solution
7
Discuss

If \(\left( {x + \frac{1}{x}} \right){ \text{ = 2,}}\)    then \(\left( {x - \frac{1}{x}} \right)\)   is equal to = ?

 

  • 1] 0
  • 2] 1
  • 3] 2
  • 4] 5
Solution
8
Discuss

Simplify : \({{{5 \over 3} \times {7 \over {51}}{ \text{ of }}{{17} \over 5} - {1 \over 3}} \over {{2 \over 9} \times {5 \over 7}{ \text{ of }}{{28} \over 5} - {2 \over 3}}}\)

 

  • 1]

    1/2

  • 2]

    4

  • 3]

    2

  • 4]

    1/4

Solution
9
Discuss

\(\frac{1}{{1 + {2^{a - b}}}} + \frac{1}{{1 + {2^{b - a}}}}\)     is equal to = ?

 

  • 1] a - b
  • 2] b - a
  • 3] 1
  • 4] 0
Solution
10
Discuss

Simplify : \(\left[ {\left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) \times \left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) - \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right) \times \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right)} \right] \div \left[ {\left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) + \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right)} \right] = ?\)

 

  • 1]

    100/101

  • 2]

    90/101

  • 3]

    20/101

  • 4]

    101/100

Solution
# Quiz