Quiz Discussion

What percentage of the numbers from 1 to 50 have squares that end in the digit 1 ?

Course Name: Quantitative Aptitude

  • 1] 1%
  • 2] 5%
  • 3] 10%
  • 4] 11%
  • 5] 20%
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

If y = 5,   then what is the value of \(10y\sqrt {{y^3} - {y^2}} \)   = ?

 

  • 1]

    \(50\sqrt 2 \)

  • 2]

    100

  • 3]

    \(200\sqrt 5 \)

  • 4]

    500

Solution
2
Discuss

If \(x = \frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}   \)  \(y = \frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}\)and then the value of \(\left( {{x^2} + {y^2}} \right)\)   is?

 

  • 1] 10
  • 2] 13
  • 3] 14
  • 4] 15
Solution
3
Discuss

What is the least number to be added to 7700 to make it a perfect square ?

  • 1] 77
  • 2] 98
  • 3] 131
  • 4] 221
  • 5] None of these
Solution
4
Discuss

Find the square root of 3 upto three decimal places

  • 1]

    1.732

  • 2]

    2.732

  • 3]

    1.222

  • 4]

    1.414

Solution
5
Discuss

What is the smallest number by which 3600 be divided to make it a perfect cube ?

  • 1] 9
  • 2] 50
  • 3] 300
  • 4] 450
Solution
6
Discuss

The smallest number to be added to 680621 to make the sum a perfect square is = ?

  • 1] 4
  • 2] 5
  • 3] 6
  • 4] 8
Solution
7
Discuss

If \(3a = 4b = 6c   \)  and \(a + b + c = 27\sqrt {29} { \text{,}}   \) then\( \sqrt {{a^2} + {b^2} + {c^2}} \)is ?

 

  • 1]

    \(3\sqrt {29} \)

  • 2]

    81

  • 3]

    87

  • 4]

    None of these

Solution
8
Discuss

The square root of \(\frac{{{{\left( {0.75} \right)}^3}}}{{1 - 0.75}} { \text{ + }}\left[ {0.75 + {{\left( {0.75} \right)}^2} + 1} \right]\)    is = ?

 

  • 1] 1
  • 2] 2
  • 3] 3
  • 4] 4
Solution
9
Discuss

What is \(\frac{{5 + \sqrt {10} }}{{5\sqrt 5 - 2\sqrt {20} - \sqrt {32} + \sqrt {50} }}\)      equal to ?

 

  • 1]

    5

  • 2]

    \(5\sqrt 2 \)

  • 3]

    \(5\sqrt 5 \)

  • 4]

    \(\sqrt 5 \)

Solution
10
Discuss

\(\left( {\frac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }} + \frac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }} + \frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right) \)     simplifies to = ?

 

  • 1]

    \(16 - \sqrt 3 \)

  • 2]

    \(4 - \sqrt 3 \)

  • 3]

    \(2 - \sqrt 3 \)

  • 4]

    \(2 + \sqrt 3 \)

Solution
# Quiz