Quiz Discussion

A square is drawn by joining the mid points of the sides of a given square in the same way and this process continues indefinitely. If a side of the first square is 4 cm, determine the sum of the areas all the square.

Course Name: Quantitative Aptitude

  • 1] 32 Cm2
  • 2] 16 Cm2
  • 3] 20 Cm2
  • 4] 64 Cm2
  • 5] None of these
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

If log 2, log (2x -1) and log (2x + 3) are in A.P, then x is equal to ___

  • 1]

     

    5/2

  • 2]

    log25

  • 3]

    log32

  • 4]

     

    3/2

Solution
2
Discuss

The 4th and 7th term of an arithmetic progression are 11 and -4 respectively. What is the 15th term?

  • 1] -49
  • 2] -44
  • 3] -39
  • 4] -34
Solution
3
Discuss

Which term of the A.P. 92, 88, 84, 80, ...... is 0?

  • 1]

    23

  • 2]

    32

  • 3]

    24

  • 4]

    28

Solution
4
Discuss

If k, 2k – 1 and 2k + 1 are three consecutive terms of an AP, the value of k is

  • 1] -2
  • 2] 3
  • 3] -3
  • 4] 6
Solution
5
Discuss

If the sum of the series 2 + 5 + 8 + 11 … is 60100, then the number of terms are

  • 1]

    100

  • 2]

    150

  • 3]

    200

  • 4]

    250

Solution
6
Discuss

If the sums of n terms of two arithmetic progressions are in the ratio \(\frac{{3n + 5}}{{5n + 7}}\)   then their nth terms are in the ration

 

  • 1]

    \(\frac{{3n - 1}}{{5n - 1}}\)

  • 2]

    \(\frac{{3n + 1}}{{5n + 1}}\)

  • 3]

    \(\frac{{5n + 1}}{{3n + 1}}\)

  • 4]

    \(\frac{{5n - 1}}{{3n - 1}}\)

Solution
7
Discuss

If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of (p + q) terms will be

  • 1] 0
  • 2] p - q
  • 3] p + q
  • 4] -(p + q)
Solution
8
Discuss

The 7th and 12th term of an arithmetic progression are -15 and 5 respectively. What is the 16th term?

  • 1] 25
  • 2] 29
  • 3] 21
  • 4] 33
Solution
9
Discuss

Find the nth term of the following sequence :
5 + 55 + 555 + . . . . Tn

  • 1]

     

    5(10n - 1) 

  • 2]

     

    5n(10n - 1)

  • 3]

    5/9×(10n−1)

       

  • 4]

    (5/9)n×(10n−1)

Solution
10
Discuss

A boy agrees to work at the rate of one rupee on the first day, two rupees on the second day, and four rupees on third day and so on. How much will the boy get if he started working on the 1st of February and finishes on the 20th of February?

  • 1] 220
  • 2] 220 -1
  • 3] 219 -1
  • 4] 219
  • 5] None of these
Solution
# Quiz