Quiz Discussion

The 3rd and 7th term of an arithmetic progression are -9 and 11 respectively. What is the 15th term?

Course Name: Quantitative Aptitude

  • 1]

    28

  • 2]

    87

  • 3]

    51

  • 4]

    17

Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

The first and last term of an A.P. is a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \(\frac{{{l^2} - {a^2}}}{{k - \left( {l + a} \right)}}\)   then k = ?

 

  • 1] S
  • 2] 2S
  • 3] 3S
  • 4] None of these
Solution
2
Discuss

Sum of n terms of the series \(\sqrt 2   +   \sqrt 8   +   \sqrt {18}   +   \sqrt {32}   +  \) ....... is

 

  • 1]

    \(\frac{{n\left( {n + 1} \right)}}{2}\)

  • 2]

    \(2n\left( {n + 1} \right)\)

  • 3]

    \(\frac{{n\left( {n + 1} \right)}}{{\sqrt 2 }}\)

  • 4]

    1

Solution
3
Discuss

15th term of A.P., x - 7, x - 2, x + 3, ........ is

  • 1] x + 63
  • 2] x + 73
  • 3] x + 83
  • 4] x + 53
Solution
4
Discuss

The sum of first five multiples of 3 is:

  • 1] 45
  • 2] 65
  • 3] 75
  • 4] 90
Solution
5
Discuss

For an A.P. if a25 - a20 = 45, then d equals to:

  • 1] 9
  • 2] -9
  • 3] 18
  • 4] 23
Solution
6
Discuss

What is the sum of the first 11 terms of an arithmetic progression if the 3rd term is -1 and the 8th term is 19?

  • 1] 204
  • 2] 121
  • 3] 225
  • 4] 104
Solution
7
Discuss

How many 2-digit positive integers are divisible by 4 or 9?

  • 1]

    32

  • 2]

    22

  • 3]

    34

  • 4]

    30

Solution
8
Discuss

If the fifth term of a GP is 81 and first term is 16, what will be the 4th term of the GP?

  • 1] 36
  • 2] 18
  • 3] 54
  • 4] 24
  • 5] 27
Solution
9
Discuss

What is the sum of the first 17 terms of an arithmetic progression if the first term is -20 and last term is 28?

  • 1] 68
  • 2] 156
  • 3] 142
  • 4] 242
Solution
10
Discuss

If 7 times the seventh term of an Arithmetic Progression (AP) is equal to 11 times its eleventh term, then the 18th term of the AP will be

  • 1] 0
  • 2] 1
  • 3] 2
  • 4] -1
Solution
# Quiz