Quiz Discussion

The common difference of the A.P. \(\frac{1}{{2b}} \frac{{1 - 6b}}{{2b}}  \frac{{1 - 12b}}{{2b}}\)   . . . . . is

 

Course Name: Quantitative Aptitude

  • 1] 2b
  • 2] -2b
  • 3] 3
  • 4] -3
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

After striking the floor, a rubber ball rebounds to 4/5th of the height from which it has fallen. Find the total distance that it travels before coming to rest if it has been gently dropped from a height of 120 metres.

  • 1] 540 m
  • 2] 960 m
  • 3] 1080 m
  • 4] 1020 m
  • 5] 1120 m
Solution
2
Discuss

What is the sum of the first 11 terms of an arithmetic progression if the 3rd term is -1 and the 8th term is 19?

  • 1] 204
  • 2] 121
  • 3] 225
  • 4] 104
Solution
3
Discuss

The 7th and 12th term of an arithmetic progression are -15 and 5 respectively. What is the 16th term?

  • 1] 25
  • 2] 29
  • 3] 21
  • 4] 33
Solution
4
Discuss

If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of (p + q) terms will be

  • 1] 0
  • 2] p - q
  • 3] p + q
  • 4] -(p + q)
Solution
5
Discuss

How many 2-digit positive integers are divisible by 4 or 9?

  • 1]

    32

  • 2]

    22

  • 3]

    34

  • 4]

    30

Solution
6
Discuss

The first and last term of an A.P. is a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \(\frac{{{l^2} - {a^2}}}{{k - \left( {l + a} \right)}}\)   then k = ?

 

  • 1] S
  • 2] 2S
  • 3] 3S
  • 4] None of these
Solution
7
Discuss

Consider an infinite G.P. with first term a and common ratio r, its sum is 4 and the second term is 3/4, then

  • 1]

    a = 7/4, r = 3/7

  • 2]

    a = 2, r = 3/8

  • 3]

    a = 3, r = 1/4

  • 4]

    a = 3/2, r = ½

Solution
8
Discuss

If the fifth term of a GP is 81 and first term is 16, what will be the 4th term of the GP?

  • 1] 36
  • 2] 18
  • 3] 54
  • 4] 24
  • 5] 27
Solution
9
Discuss

If k, 2k – 1 and 2k + 1 are three consecutive terms of an AP, the value of k is

  • 1] -2
  • 2] 3
  • 3] -3
  • 4] 6
Solution
10
Discuss

If the sums of n terms of two arithmetic progressions are in the ratio \(\frac{{3n + 5}}{{5n + 7}}\)   then their nth terms are in the ration

 

  • 1]

    \(\frac{{3n - 1}}{{5n - 1}}\)

  • 2]

    \(\frac{{3n + 1}}{{5n + 1}}\)

  • 3]

    \(\frac{{5n + 1}}{{3n + 1}}\)

  • 4]

    \(\frac{{5n - 1}}{{3n - 1}}\)

Solution
# Quiz