Quiz Discussion

Given \(\sqrt 5 = 2.2361,   \sqrt 3 = 1.7321{ \text{,}}   then \frac{1}{{\sqrt 5 - \sqrt 3 }}\)   is equal to ?

 

Course Name: Quantitative Aptitude

  • 1] 1.98
  • 2] 1.984
  • 3] 1.9841
  • 4] 2
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

\(1728 \div \root 3 \of {262144} \times ? - 288\)      = 4491

 

  • 1] 148
  • 2] 156
  • 3] 173
  • 4] 177
Solution
2
Discuss

The number of digits in the square root of 625685746009 is = ?

  • 1] 4
  • 2] 5
  • 3] 6
  • 4] 7
Solution
3
Discuss

If \(\sqrt {24} = 4.889,\)   the value of \(\sqrt {\frac{8}{3}} \)   is = ?

 

  • 1] 0.544
  • 2] 1.333
  • 3] 1.633
  • 4] 2.666
Solution
4
Discuss

1250 oranges were distributed among a group of girls of a class. Each girl got twice as many oranges as the number of girls in that group. The number of girls in the group was = ?

  • 1] 25
  • 2] 45
  • 3] 50
  • 4] 100
Solution
5
Discuss

Given that \(\sqrt {13} = 3.605\)   and \(\sqrt {130} = 11.40\)  . find the value of \(\sqrt {1.30} \)  + \(\sqrt {1300}\)  + \(\sqrt {0.0130} \)   = ?

 

  • 1] 36.164
  • 2] 36.304
  • 3] 37.164
  • 4] 37.304
Solution
6
Discuss

What percentage of the numbers from 1 to 50 have squares that end in the digit 1 ?

  • 1] 1%
  • 2] 5%
  • 3] 10%
  • 4] 11%
  • 5] 20%
Solution
7
Discuss

R is a positive number. It is multiplied by 8 and then squared. The square is now divided by 4 and the square root is taken. The result of the square root is Q. What is the value of Q ?

  • 1] 3R
  • 2] 4R
  • 3] 7R
  • 4] 9R
Solution
8
Discuss

If √x+x/y  = x√x/y  where x and y are positive real numbers, then y is equal to ?

 

  • 1]

    x + 1

  • 2]

    x - 1

  • 3]

    x2 + 1

  • 4]

    x2 - 1

Solution
9
Discuss

If \(\sqrt y = 4x{ \text{}}   \) then \(\frac{{{x^2}}}{y}\) is = ?

 

  • 1]

    2

  • 2]

    1/16

  • 3]

    1/4

  • 4]

    4

Solution
10
Discuss

Determined the value of \(\frac{1}{{\sqrt 1 + \sqrt 2 }}{ \text{ + }}  \frac{1}{{\sqrt 2 + \sqrt 3 }} +   \frac{1}{{\sqrt 3 + \sqrt 4 }} +   ...... +   \frac{1}{{\sqrt {120} + \sqrt {121} }}{ \text{ = ?}}\)

 

  • 1]

    8

  • 2]

    10

  • 3]

    \(\sqrt {120} \)

  • 4]

    \(12\sqrt 2 \)

Solution
# Quiz