Quiz Discussion

Given \(\sqrt 2 = 1.414.\)   Then the value of \(\sqrt 8\)  + \(2\sqrt {32} \)  -  \(3\sqrt {128}\)  + \(4\sqrt {50}\)   is = ?

 

Course Name: Quantitative Aptitude

  • 1] 8.426
  • 2] 8.484
  • 3] 8.526
  • 4] 8.876
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

The digit in the unit's place in the square root of 15876 is = ?

  • 1] 2
  • 2] 4
  • 3] 6
  • 4] 8
Solution
2
Discuss

What is the least number to be added to 7700 to make it a perfect square ?

  • 1] 77
  • 2] 98
  • 3] 131
  • 4] 221
  • 5] None of these
Solution
3
Discuss

If the product of four consecutive natural numbers increased by a natural number p, is a perfect square, then the value of p is = ?

  • 1] 1
  • 2] 2
  • 3] 4
  • 4] 8
Solution
4
Discuss

The square root of 123454321 is = ?

  • 1] 111111
  • 2] 12341
  • 3] 11111
  • 4] 11211
Solution
5
Discuss

The square root of \(\left( {7 + 3\sqrt 5 } \right)  \left( {7 - 3\sqrt 5 } \right)\)   is

 

  • 1]

    \(\sqrt 5 \)

  • 2]

    2

  • 3]

    4

  • 4]

    \(3\sqrt 5 \)

Solution
6
Discuss

The value of \(\frac{{1 + \sqrt {0.01} }}{{1 - \sqrt {0.1} }}\)   is close to = ?

 

  • 1] 0.6
  • 2] 1.1
  • 3] 1.6
  • 4] 1.7
Solution
7
Discuss

If \(a = \frac{{\sqrt 5 + 1}}{{\sqrt 5 - 1}}   \) and \(b = \frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}},\)   the value of \(\left( {\frac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}} \right)\)   is ?

 

  • 1]

    3/4

  • 2]

    4/3

  • 3]

    3/5

  • 4]

    5/3

Solution
8
Discuss

\({1.5^2} \times \sqrt {0.0225} = ?\)

 

  • 1] 0.0375
  • 2] 0.3375
  • 3] 3.275
  • 4] 32.75
Solution
9
Discuss

How many two-digit numbers satisfy this property. : The last digit (unit's digit) of the square of the two-digit number is 8 ?

  • 1] 1
  • 2] 2
  • 3] 3
  • 4] None of these
Solution
10
Discuss

If \(a = \frac{{\sqrt 3 }}{2}{ \text{}}\)   then \(\sqrt {1 + a} + \sqrt {1 - a} = ?\)

 

  • 1]

    \(\left( {2 - \sqrt 3 } \right)\)

  • 2]

    \(\left( {2 + \sqrt 3 } \right)\)

  • 3]

    \(\left( {\frac{{\sqrt 3 }}{2}} \right)\)

  • 4]

    \(\sqrt 3 \)

Solution
# Quiz