Quiz Discussion

The sum of n terms of an A.P. is 3n2 + 5n, then 164 is its

Course Name: Quantitative Aptitude

  • 1] 24th term
  • 2] 27th term
  • 3] 26th term
  • 4] 25th term
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

If k, 2k – 1 and 2k + 1 are three consecutive terms of an AP, the value of k is

 

  • 1]

    -2

  • 2]

    -3

  • 3]

    2

  • 4]

    3

Solution
2
Discuss

What is the sum of the following series? -64, -66, -68, ......, -100

  • 1] -1458
  • 2] -1558
  • 3] -1568
  • 4] -1664
Solution
3
Discuss

Which term of the A.P. 92, 88, 84, 80, ...... is 0?

  • 1]

    23

  • 2]

    32

  • 3]

    24

  • 4]

    28

Solution
4
Discuss

Find the nth term of the following sequence :
5 + 55 + 555 + . . . . Tn

  • 1]

     

    5(10n - 1) 

  • 2]

     

    5n(10n - 1)

  • 3]

    5/9×(10n−1)

       

  • 4]

    (5/9)n×(10n−1)

Solution
5
Discuss

Two A.P.’s have the same common difference. The first term of one of these is 8 and that of the other is 3. The difference between their 30th terms is

  • 1] 11
  • 2] 3
  • 3] 8
  • 4] 5
Solution
6
Discuss

What is the sum of the first 12 terms of an arithmetic progression if the first term is -19 and last term is 36?

  • 1]

    192

  • 2]

    230

  • 3]

    102

  • 4]

    204

Solution
7
Discuss

The common difference of the A.P. \(\frac{1}{3}, \frac{{1 - 3b}}{3} , \frac{{1 - 6b}}{3}\)   . . . . . . is

 

  • 1]

    \(\frac{1}{3}\)

  • 2]

    \( - \frac{1}{3}\)

  • 3]

    -b

  • 4]

    b

Solution
8
Discuss

Find the nth term of the following sequence :

  • 1]

    5(10n - 1)

  • 2]

    5n(10n - 1)

  • 3]

    \(\frac{5}{9} \times \left( {{{10}^n} - 1} \right)\)

  • 4]

    \({\left( {\frac{5}{9}} \right)^n} \times \left( {{{10}^n} - 1} \right)\)

Solution
9
Discuss

If a + 1, 2a + 1, 4a - 1 are in A.P., then the value of a is:

  • 1] 1
  • 2] 2
  • 3] 3
  • 4] 4
Solution
10
Discuss

What is the sum of all 3 digit numbers that leave a remainder of '2' when divided by 3?

  • 1]

    897

  • 2]

    1,64,850

  • 3]

    1,64,749

  • 4]

    1,49,700

Solution
# Quiz