Quiz Discussion

The 3rd and 7th term of an arithmetic progression are -9 and 11 respectively. What is the 15th term?

Course Name: Quantitative Aptitude

  • 1] 28
  • 2] 87
  • 3] 51
  • 4] 17
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

If the sums of n terms of two arithmetic progressions are in the ratio \(\frac{{3n + 5}}{{5n + 7}}\)   then their nth terms are in the ration

 

  • 1]

    \(\frac{{3n - 1}}{{5n - 1}}\)

  • 2]

    \(\frac{{3n + 1}}{{5n + 1}}\)

  • 3]

    \(\frac{{5n + 1}}{{3n + 1}}\)

  • 4]

    \(\frac{{5n - 1}}{{3n - 1}}\)

Solution
2
Discuss

Two A.P.’s have the same common difference. The first term of one of these is 8 and that of the other is 3. The difference between their 30th terms is

  • 1] 11
  • 2] 3
  • 3] 8
  • 4] 5
Solution
3
Discuss

The 3rd and 6th term of an arithmetic progression are 13 and -5 respectively. What is the 11th term?

  • 1] -29
  • 2] -41
  • 3] -47
  • 4] -35
Solution
4
Discuss

If the sum of three consecutive terms of an increasing A.P. is 51 and the product of the first and third of these terms is 273, then the third term is :

  • 1] 13
  • 2] 9
  • 3] 21
  • 4] 17
Solution
5
Discuss

The sum of n terms of an A.P. is 3n2 + 5n, then 164 is its

  • 1] 24th term
  • 2] 27th term
  • 3] 26th term
  • 4] 25th term
Solution
6
Discuss

The 3rd and 7th term of an arithmetic progression are -9 and 11 respectively. What is the 15th term?

  • 1]

    28

  • 2]

    87

  • 3]

    51

  • 4]

    17

Solution
7
Discuss

If S1 is the sum of an arithmetic progression of ‘n’ odd number of terms and S2 is the sum of the terms of the series in odd places, then \(\frac{{{S_1}}}{{{S_2}}}\)

 

  • 1]

    \(\frac{{2n}}{{n + 1}}\)

  • 2]

    \(\frac{n}{{n + 1}}\)

  • 3]

    \(\frac{{n + 1}}{{2n}}\)

  • 4]

    \(\frac{{n - 1}}{n}\)

Solution
8
Discuss

If the sum of the series 2 + 5 + 8 + 11 … is 60100, then the number of terms are

  • 1]

    100

  • 2]

    150

  • 3]

    200

  • 4]

    250

Solution
9
Discuss

What is the sum of all positive integers up to 1000, which are divisible by 5 and are not divisible by 2?

  • 1] 10,050
  • 2] 5050
  • 3] 5000
  • 4] 50,000
Solution
10
Discuss

A square is drawn by joining the mid points of the sides of a given square in the same way and this process continues indefinitely. If a side of the first square is 4 cm, determine the sum of the areas all the square.

  • 1] 32 Cm2
  • 2] 16 Cm2
  • 3] 20 Cm2
  • 4] 64 Cm2
  • 5] None of these
Solution
# Quiz