\(\left( {\frac{{785 \times 785 \times 785 + 435 \times 435 \times 435}}{{785 \times 785 + 435 \times 435 - 785 \times 435}}} \right)\) simplifies to = ?
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
| # | Quiz |
|---|---|
|
1
Discuss
|
The simplified value of \(\frac{{\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right)\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right) - \left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)\left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)}}{{\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right) + \left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)}} = ?\)
Solution |
|
2
Discuss
|
If a*b= ab/a+b, find the value of 3*(3*-1)
Solution |
|
3
Discuss
|
\(\sqrt {\frac{{{{\left( {0.03} \right)}^2} + {{\left( {0.21} \right)}^2} + {{\left( {0.065} \right)}^2}}}{{{{\left( {0.003} \right)}^2} + {{\left( {0.021} \right)}^2} + {{\left( {0.0065} \right)}^2}}}}\)
Solution |
|
4
Discuss
|
Supply the two missing figures in order indicated by x and y in the given equation, the fractions being in their lowest terms.
Solution |
|
5
Discuss
|
A fires 5 shots to B's 3 but A kills only once in 3 shots while B kills once in 2 shots. When B has missed 27 times, A has killed:
Solution |
|
6
Discuss
|
The value of \(\frac{{25 - 5\left[ {2 + 3\left\{ {2 - 2\left( {5 - 3} \right) + 5} \right\} - 10} \right]}}{4} = ?\)
Solution |
|
7
Discuss
|
If \(x = \sqrt 3 { \text{ + }}\sqrt 2 { \text{,}} \) then the value of \({x^3} - \frac{1}{{{x^3}}}\) is?
Solution |
|
8
Discuss
|
Direction: In the question given below the given mathematical symbols are changed from '+' to '÷', '-' to '×', '÷' to '-' and from '×' to '+', then choose your answers from the following options.
Solution |
|
9
Discuss
|
\(\left\{ {\left( {\sqrt {72} - \sqrt {18} } \right) \div \sqrt {12} } \right\}\) is equal to = ?
Solution |
|
10
Discuss
|
The value of \(\frac{{\sqrt {80} - \sqrt {112} }}{{\sqrt {45} - \sqrt {63} }} = ?\)
Solution |
| # | Quiz |
Copyright © 2020 Inovatik - All rights reserved