Quiz Discussion

Find the value of \(\sqrt {4 + \sqrt {44 + \sqrt {10000} } } \)

 

Course Name: Quantitative Aptitude

  • 1] 12
  • 2] 8
  • 3] 4
  • 4] -4
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

The greatest 4 digit number which is a perfect square, is = ?

  • 1] 9999
  • 2] 9909
  • 3] 9801
  • 4] 9081
Solution
2
Discuss

If \(\left( {a + \frac{1}{a}} \right) = 6,    then \left( {{a^4} + \frac{1}{{{a^4}}}} \right)\)   = ?

 

  • 1] 1154
  • 2] 1158
  • 3] 1160
  • 4] 1164
Solution
3
Discuss

If \(\left( {x + \frac{1}{x}} \right) = 3,\)    then \(\left( {{x^2} + \frac{1}{{{x^2}}}} \right)\)   is = ?

 

  • 1]

    10/3

  • 2]

    82/9

  • 3]

    7

  • 4]

    11

Solution
4
Discuss

The value of \(\frac{{25 - 5\left[ {2 + 3\left\{ {2 - 2\left( {5 - 3} \right) + 5} \right\} - 10} \right]}}{4} = ?\)

 

  • 1] 5
  • 2] 23.25
  • 3] 23.75
  • 4] 25
Solution
5
Discuss

If \(\frac{{x + 1}}{{x - 1}}{ \text{ = }}\frac{a}{b}  \)    and \(\frac{{1 - y}}{{1 + y}}{ \text{ = }}\frac{b}{a}{ \text{,}} \) then the value of \(\frac{{x - y}}{{1 + xy}}\)   = ?

 

  • 1]

    \(\frac{{2ab}}{{{a^2} - {b^2}}}\)

  • 2]

    \(\frac{{{a^2} - {b^2}}}{{2ab}}\)

  • 3]

    \(\frac{{{a^2} + {b^2}}}{{2ab}}\)

  • 4]

    \(\frac{{{a^2} - {b^2}}}{{ab}}\)

Solution
6
Discuss

(4 / 5) × ? × (3 / 7) = (16 / 105)

  • 1]

    8/9

  • 2]

    5/7

  • 3]

    4/9

  • 4]

    3/7

Solution
7
Discuss

The number of pairs of natural numbers the difference of whose squares is 45 will be ?

  • 1] 2
  • 2] 3
  • 3] 6
  • 4] 5
Solution
8
Discuss

If \(\left( {{a^4} + \frac{1}{{{a^4}}}} \right){ \text{ = 1154,}}\)     then the value of \(\left( {{a^3} + \frac{1}{{{a^3}}}} \right)\)   is = ?

 

  • 1] 198
  • 2] 200
  • 3] 216
  • 4] None of these
Solution
9
Discuss

Number of digits in the square root of 62478078 is = ?

  • 1] 4
  • 2] 5
  • 3] 6
  • 4] 3
Solution
10
Discuss

Assume that \(\sqrt {13} \) = 3.605(approximately) and \(\sqrt {130}\)  = 11.40(approximately) Find the value of: \(\sqrt {1.3}\) + \(\sqrt {1300}\)  + \(\sqrt {0.013}\)

 

  • 1] 36.164
  • 2] 36.304
  • 3] 37.304
  • 4] 37.164
Solution
# Quiz