If \(a = \frac{{\sqrt 5 + 1}}{{\sqrt 5 - 1}} \) and \(b = \frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}},\) the value of \(\left( {\frac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}} \right)\) is ?
3/4
4/3
3/5
5/3
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
Given \(\sqrt 2 = 1.414.\) Then the value of \(\sqrt 8\) + \(2\sqrt {32} \) - \(3\sqrt {128}\) + \(4\sqrt {50}\) is = ?
Solution |
2
Discuss
|
The square root of \(\frac{{{{\left( {0.75} \right)}^3}}}{{1 - 0.75}} { \text{ + }}\left[ {0.75 + {{\left( {0.75} \right)}^2} + 1} \right]\) is = ?
Solution |
3
Discuss
|
\({\left( {\sqrt 3 - \frac{1}{{\sqrt 3 }}} \right)^2}\) simplifies to:
Solution |
4
Discuss
|
The square root of \({ \text{0}}{ \text{.}}\overline { \text{4}} \) is ?
Solution |
5
Discuss
|
\({\left( {15} \right)^2} + {\left( {18} \right)^2} - 20 = \sqrt ? \)
Solution |
6
Discuss
|
If \(\sqrt 2 = 1.414{ \text{,}} \) the square root of \(\frac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}\) is nearest to = ?
Solution |
7
Discuss
|
The number of perfect square numbers between 50 and 1000 is = ?
Solution |
8
Discuss
|
The number of digits in the square root of 625685746009 is = ?
Solution |
9
Discuss
|
The square root of 64009 is:
Solution |
10
Discuss
|
What percentage of the numbers from 1 to 50 have squares that end in the digit 1 ?
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved