Quiz Discussion

The expression \(\frac{1}{{x - 1}} - \frac{1}{{x + 1}} - \frac{2}{{{x^2} + 1}} - \frac{4}{{{x^4} + 1}}\)  is equal to = ?

 

Course Name: Java

  • 1]

    \(\frac{8}{{{x^8} + 1}}\)

  • 2]

    \(\frac{8}{{{x^8} - 1}}\)

  • 3]

    \(\frac{8}{{{x^7} - 1}}\)

  • 4]

    \(\frac{8}{{{x^7} + 1}}\)

Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

Assume that \(\sqrt {13} \) = 3.605(approximately) and \(\sqrt {130}\)  = 11.40(approximately) Find the value of: \(\sqrt {1.3}\) + \(\sqrt {1300}\)  + \(\sqrt {0.013}\)

 

  • 1] 36.164
  • 2] 36.304
  • 3] 37.304
  • 4] 37.164
Solution
2
Discuss

Find the value of * in the following. \({ \text{1}}\frac{2}{3} \div \frac{2}{7} \times \frac{*}{7} = 1\frac{1}{4} \times \frac{2}{3} \div \frac{1}{6}\)

 

  • 1]

    0.006

  • 2]

    1/6

  • 3]

    0.6

  • 4]

    6

Solution
3
Discuss

(9.0 / 2 * 27 / 9 ) / (18/7.5 * 5.0 / 4) = ?

  • 1]

    5.5

  • 2]

    4.0

  • 3]

    4.5

  • 4]

    3.0

Solution
4
Discuss

If \(x = \sqrt 3 { \text{ + }}\sqrt 2 { \text{,}}   \) then the value of \({x^3} - \frac{1}{{{x^3}}}\)  is?

 

  • 1]

    \(10\sqrt 2 \)

  • 2]

    \(14\sqrt 2\)

  • 3]

    \(22\sqrt 2\)

  • 4]

    \(8\sqrt 2\)

Solution
5
Discuss

(98764 + 89881 + 99763 + 66342) ÷ (1186 + ? + 1040 + 1870) = 55

  • 1] 2254
  • 2] 2354
  • 3] 2368
  • 4] 2404
  • 5] None of these
Solution
6
Discuss

If \( \left( {x + \frac{1}{x}} \right){ \text{ = }}\sqrt {13} { \text{,}} \)    then the value of \(\left( {{x^3} - \frac{1}{{{x^3}}}} \right)\)  is = ?

 

  • 1] 26
  • 2] 27
  • 3] 30
  • 4] 36
Solution
7
Discuss

Solve \({ \text{1}}\frac{4}{5} + 20 - 280 \div 25 = ?\)

 

  • 1]

    \(8\frac{1}{5}\)

  • 2]

    \(9\frac{1}{2}\)

  • 3]

    \(11\frac{1}{2}\)

  • 4]

    \(10\frac{3}{5}\)

  • 5]

    \(12\frac{1}{5}\)

Solution
8
Discuss

\(\left( {x + \frac{1}{x}} \right)\left( {x - \frac{1}{x}} \right)\left( {{x^2} + \frac{1}{{{x^2}}} - 1} \right)\left( {{x^2} + \frac{1}{{{x^2}}} + 1} \right)\)   is equal to ?

 

  • 1]

    \({x^6} - \frac{1}{{{x^6}}}\)

  • 2]

    \({x^8} - \frac{1}{{{x^8}}}\)

  • 3]

    \({x^6} + \frac{1}{{{x^6}}}\)

  • 4]

    \({x^8} + \frac{1}{{{x^8}}}\)

Solution
9
Discuss

If \(\left( {x - \frac{1}{x}} \right){ \text{ = }}\sqrt {21} { \text{,}} \)    then the value of \(\left( {{x^2} + \frac{1}{{{x^2}}}} \right) \left( {x + \frac{1}{x}} \right)\) is = ?

 

  • 1] 42
  • 2] 63
  • 3] 115
  • 4] 120
  • 5] 125
Solution
10
Discuss

The value of \(\frac{{\sqrt {80} - \sqrt {112} }}{{\sqrt {45} - \sqrt {63} }} = ?\)

 

  • 1]

    3/4

  • 2]

    \(1\frac{3}{4}\)

  • 3]

    \(1\frac{1}{3}\)

  • 4]

    \(1\frac{7}{9}\)

Solution
# Quiz