The expression \(\frac{1}{{x - 1}} - \frac{1}{{x + 1}} - \frac{2}{{{x^2} + 1}} - \frac{4}{{{x^4} + 1}}\) is equal to = ?
\(\frac{8}{{{x^8} + 1}}\)
\(\frac{8}{{{x^8} - 1}}\)
\(\frac{8}{{{x^7} - 1}}\)
\(\frac{8}{{{x^7} + 1}}\)
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
Assume that \(\sqrt {13} \) = 3.605(approximately) and \(\sqrt {130}\) = 11.40(approximately) Find the value of: \(\sqrt {1.3}\) + \(\sqrt {1300}\) + \(\sqrt {0.013}\)
Solution |
2
Discuss
|
Find the value of * in the following. \({ \text{1}}\frac{2}{3} \div \frac{2}{7} \times \frac{*}{7} = 1\frac{1}{4} \times \frac{2}{3} \div \frac{1}{6}\)
Solution |
3
Discuss
|
(9.0 / 2 * 27 / 9 ) / (18/7.5 * 5.0 / 4) = ?
Solution |
4
Discuss
|
If \(x = \sqrt 3 { \text{ + }}\sqrt 2 { \text{,}} \) then the value of \({x^3} - \frac{1}{{{x^3}}}\) is?
Solution |
5
Discuss
|
(98764 + 89881 + 99763 + 66342) ÷ (1186 + ? + 1040 + 1870) = 55
Solution |
6
Discuss
|
If \( \left( {x + \frac{1}{x}} \right){ \text{ = }}\sqrt {13} { \text{,}} \) then the value of \(\left( {{x^3} - \frac{1}{{{x^3}}}} \right)\) is = ?
Solution |
7
Discuss
|
Solve \({ \text{1}}\frac{4}{5} + 20 - 280 \div 25 = ?\)
Solution |
8
Discuss
|
\(\left( {x + \frac{1}{x}} \right)\left( {x - \frac{1}{x}} \right)\left( {{x^2} + \frac{1}{{{x^2}}} - 1} \right)\left( {{x^2} + \frac{1}{{{x^2}}} + 1} \right)\) is equal to ?
Solution |
9
Discuss
|
If \(\left( {x - \frac{1}{x}} \right){ \text{ = }}\sqrt {21} { \text{,}} \) then the value of \(\left( {{x^2} + \frac{1}{{{x^2}}}} \right) \left( {x + \frac{1}{x}} \right)\) is = ?
Solution |
10
Discuss
|
The value of \(\frac{{\sqrt {80} - \sqrt {112} }}{{\sqrt {45} - \sqrt {63} }} = ?\)
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved