Quiz Discussion

If \(\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1\)     and \(\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0\)     where a, b, c, p, q, r are non-zero real numbers, then \(\frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}}\)    is equal to = ?

 

Course Name: Java

  • 1] 0
  • 2] 1
  • 3] 3
  • 4] 9
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

\(\left\{ {\left( {64 - 38} \right) \times 4} \right\} \div 13 = ?\)

 

  • 1] 4
  • 2] 1
  • 3] 8
  • 4] 2
  • 5] 5
Solution
2
Discuss

If \(\left( {4{b^2} + \frac{1}{{{b^2}}}} \right){ \text{ = 2,}} \)    then \(\left( {8{b^3} + \frac{1}{{{b^3}}}} \right)\)   = ?

 

  • 1] 0
  • 2] 1
  • 3] 2
  • 4] 5
Solution
3
Discuss

\(\frac{3}{2} \times \frac{{11}}{5} \div \left( {\frac{{25}}{{44}} \times \frac{{11}}{5}} \right) \div \frac{{33}}{{15}} = ?\)

 

  • 1]

    1/2

  • 2]

    2/3

  • 3]

    126/125

  • 4]

    \(5\frac{{101}}{{125}}\)

  • 5]

    None of these

Solution
4
Discuss

The expression \(\frac{1}{{x - 1}} - \frac{1}{{x + 1}} - \frac{2}{{{x^2} + 1}} - \frac{4}{{{x^4} + 1}}\)  is equal to = ?

 

  • 1]

    \(\frac{8}{{{x^8} + 1}}\)

  • 2]

    \(\frac{8}{{{x^8} - 1}}\)

  • 3]

    \(\frac{8}{{{x^7} - 1}}\)

  • 4]

    \(\frac{8}{{{x^7} + 1}}\)

Solution
5
Discuss

Given that ( 12 + 22 + 32 + .......... + 102 ) = 385, then the value of ( 22 + 32 + 42 + .......... + 202 ) is equal to = ?

  • 1] 770
  • 2] 1155
  • 3] 1540
  • 4] (385)2
Solution
6
Discuss

Solve this 9 3/7 - 6 4/7 - ? = 14 4/7

  • 1]

    3/7

  • 2]

    4/7

  • 3]

  • 4]

Solution
7
Discuss

\(\frac{{ \root 3 \of 8 }}{{\sqrt {16} }} \div \sqrt {\frac{{100}}{{49}}} \times \root 3 \of {125} \)     is equal to = ?

 

  • 1]

    7

  • 2]

    \(1\frac{3}{4}\)

  • 3]

    \(\frac{7}{{1000}}\)

  • 4]

    \(\frac{4}{7}\)

Solution
8
Discuss

Simplify : \({ \text{8}}\frac{1}{2} - \left[ {3\frac{1}{4} + \left\{ {1\frac{1}{4} - \frac{1}{2}\left( {1\frac{1}{2} - \frac{1}{3} - \frac{1}{6}} \right)} \right\}} \right]\)

 

  • 1]

    \(4\frac{1}{2}\)

  • 2]

    \(4\frac{1}{6}\)

  • 3]

    \(9\frac{1}{2}\)

  • 4]

    \(\frac{2}{9}\)

Solution
9
Discuss

\(\frac{{{{\left( {3\frac{2}{3}} \right)}^2} - {{\left( {2\frac{1}{2}} \right)}^2}}}{{{{\left( {4\frac{3}{4}} \right)}^2} - {{\left( {3\frac{1}{3}} \right)}^2}}}\div\frac{{3\frac{2}{3} - 2\frac{1}{2}}}{{4\frac{3}{4} - 3\frac{1}{3}}}\)   = ?

 

  • 1]

    37/97

  • 2]

    74/97

  • 3]

    \(1\frac{{23}}{{74}}\)

  • 4]

    None of these

Solution
10
Discuss

The simplification of \(\frac{5}{{3 + \frac{3}{{1 - \frac{2}{3}}}}}, = ?\)

 

  • 1]

    5

  • 2]

    5/3

  • 3]

    5/12

  • 4]

    3/4

Solution
# Quiz