Quiz Discussion

Simplify : \(1 + {2 \over {1 + {3 \over {1 + {4 \over 5}}}}}\)

 

Course Name: Quantitative Aptitude

  • 1]

    7/4

  • 2]

    4/7

  • 3]

    7/5

  • 4]

    3/7

Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

Simplify : \({ \text{10}}\frac{1}{8}{ \text{ of }}\frac{{12}}{{15}} \div \frac{{35}}{{36}}{ \text{ of }}\frac{{20}}{{49}}\)

 

  • 1]

    \(17\frac{5}{{12}}\)

  • 2]

    \(17\frac{8}{{17}}\)

  • 3]

    \(20\frac{3}{{25}}\)

  • 4]

    \(20\frac{{103}}{{250}}\)

Solution
2
Discuss

Let 0 < x < 1, then the correct inequality is = ?

  • 1]

    \(x < \sqrt x < {x^2}\)

  • 2]

    \(\sqrt x < x < {x^2}\)

  • 3]

    \({x^2} < x < \sqrt x \)

  • 4]

    \(\sqrt x < {x^2} < x\)

Solution
3
Discuss

If a - b = 3 and a2 + b2 = 29, find the value of ab = ?

  • 1] 10
  • 2] 12
  • 3] 15
  • 4] 18
Solution
4
Discuss

The value of x in the equation  = 5     is?

 

  • 1] 21
  • 2] 27
  • 3] 35
  • 4] 42
Solution
5
Discuss

98643 – 21748 = 51212 + ?

  • 1]

    24383

  • 2]

    24713

  • 3]

    25683

  • 4]

    26243

Solution
6
Discuss

1559.95 - 7.99 × 24.96 - ?2 = 1154

  • 1] 14
  • 2] 24
  • 3] 32
  • 4] 18
  • 5] 8
Solution
7
Discuss

If \(\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1\)     and \(\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0\)     where a, b, c, p, q, r are non-zero real numbers, then \(\frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}}\)    is equal to = ?

 

  • 1] 0
  • 2] 1
  • 3] 3
  • 4] 9
Solution
8
Discuss

If (a+b+2c+3d)(a-b-2c+3d)=(a-b+2c-3d)(a+b-2c-3d), then 2bcis equal to?

  • 1]

    3ad

  • 2]

    3ac

  • 3]

    2ad

  • 4]

    2ab

Solution
9
Discuss

The number of pairs of natural numbers the difference of whose squares is 45 will be ?

  • 1] 2
  • 2] 3
  • 3] 6
  • 4] 5
Solution
10
Discuss

The simplified value of \(\frac{{\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right)\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right) - \left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)\left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)}}{{\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right) + \left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)}} = ?\)

 

  • 1]

    100

  • 2]

    200/101

  • 3]

    200

  • 4]

    202/100

Solution
# Quiz