Quiz Discussion

If (2a+b)/(a+4b)=3 , then find the value of (a+b)/(a+2b)

Course Name: Quantitative Aptitude

  • 1]

    10/9

  • 2]

    1/9

  • 3]

    11/7

  • 4]

    8/7

Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

The difference of \({ \text{1}}\frac{3}{{16}}\) and its reciprocal is equal to = ?

 

  • 1]

    \(1\frac{1}{8}\)

  • 2]

    4/3

  • 3]

    15/16

  • 4]

    None of these

Solution
2
Discuss

The cost of 5 pendants and 8 chains is Rs. 145785. What would be the cost of 15 pendants and 24 chains ?

  • 1] Rs. 325285
  • 2] Rs. 439355
  • 3] Rs. 550000
  • 4] Cannot be determined
  • 5] None of these
Solution
3
Discuss

\(\sqrt {\frac{{4\frac{1}{7} - 2\frac{1}{4}}}{{3\frac{1}{2} + 1\frac{1}{7}}} \div \frac{1}{{2 + \frac{1}{{2 + \frac{1}{{5 - \frac{1}{5}}}}}}}} \)     is equal to = ?

 

  • 1] 1
  • 2] 4
  • 3] 3
  • 4] 2
Solution
4
Discuss

The value of \(\frac{{25 - 5\left[ {2 + 3\left\{ {2 - 2\left( {5 - 3} \right) + 5} \right\} - 10} \right]}}{4} = ?\)

 

  • 1] 5
  • 2] 23.25
  • 3] 23.75
  • 4] 25
Solution
5
Discuss

\({ \text{If }}\left[ {4 - \frac{5}{{1 + \frac{1}{{3 + \frac{1}{{2 + \frac{1}{4}}}}}}}} \right]\)  \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

 

  • 1] 40 minutes
  • 2] 45 minutes
  • 3] 48 minutes
  • 4] 36 minutes
Solution
6
Discuss

The simplification of \(\left( {\frac{{75983 \times 75983 - 45983 \times 45983}}{{30000}}} \right)\)yields the result = ?

 

  • 1] 121796
  • 2] 121866
  • 3] 121956
  • 4] 121966
Solution
7
Discuss

If the sum of two numbers is 22 and the sum of their squares is 404, then the product of two numbers is = ?

  • 1] 40
  • 2] 44
  • 3] 80
  • 4] 88
Solution
8
Discuss

\(6\frac{5}{6} \times 5\frac{1}{3} \times 17\frac{2}{3} \times 4\frac{1}{2} = ?\)

 

  • 1]

    \(112\frac{1}{3}\)

  • 2]

    \(116\frac{2}{3}\)

  • 3]

    240

  • 4]

    663

  • 5]

    None of these

Solution
9
Discuss

\(\frac{1}{{1 + {2^{a - b}}}} + \frac{1}{{1 + {2^{b - a}}}}\)     is equal to = ?

 

  • 1] a - b
  • 2] b - a
  • 3] 1
  • 4] 0
Solution
10
Discuss

The least number that must be subtracted from 63522 to make the result a perfect square is = ?

  • 1] 18
  • 2] 20
  • 3] 24
  • 4] 30
Solution
# Quiz