The value of \({ \text{5}}\frac{1}{3} \div 1\frac{2}{9} \times \frac{1}{4} \left( {10 + \frac{3}{{1 - \frac{1}{5}}}} \right)\) = ?
15
67/25
128/11
128/99
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
If \(\left( {x + \frac{1}{x}} \right) = 3,\) then \(\left( {{x^2} + \frac{1}{{{x^2}}}} \right)\) is = ?
Solution |
2
Discuss
|
Given that |
3
Discuss
|
\(\sqrt {\frac{{4\frac{1}{7} - 2\frac{1}{4}}}{{3\frac{1}{2} + 1\frac{1}{7}}} \div \frac{1}{{2 + \frac{1}{{2 + \frac{1}{{5 - \frac{1}{5}}}}}}}} \) is equal to = ?
Solution |
4
Discuss
|
Simplify : \(\frac{{\frac{5}{3} \times \frac{7}{{51}}{ \text{ of }}\frac{17}{5} - \frac{1}{3}}}{{\frac{2}{9} \times \frac{5}{7}{ \text{ of }}\frac{{28}}{5} - \frac{2}{3}}}{\kern 1pt} {\kern 1pt} = ?\)
Solution |
5
Discuss
|
If \(\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1\) and \(\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0\) where a, b, c, p, q, r are non-zero real numbers, then \(\frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}}\) is equal to = ?
Solution |
6
Discuss
|
Find the value of * in the following. \({ \text{1}}\frac{2}{3} \div \frac{2}{7} \times \frac{*}{7} = 1\frac{1}{4} \times \frac{2}{3} \div \frac{1}{6}\)
Solution |
7
Discuss
|
572.0 / 26 * 12 – 200 = (2)^x
Solution |
8
Discuss
|
The simplified value of \(\frac{{\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right)\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right) - \left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)\left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)}}{{\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right) + \left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)}} = ?\)
Solution |
9
Discuss
|
If x = a + m, y = b + m, z = c + m, then the value of \(\frac{{{x^2} + {y^2} + {z^2} - yz - zx - xy}}{{{a^2} + {b^2} + {c^2} - ab - bc - ca}}\) is = ?
Solution |
10
Discuss
|
Simplify : \(1 + {1 \over {1 + {2 \over {2 + {3 \over {1 + {4 \over 5}}}}}}}\)
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved