The value of \({ \text{5}}\frac{1}{3} \div 1\frac{2}{9} \times \frac{1}{4} \left( {10 + \frac{3}{{1 - \frac{1}{5}}}} \right)\) = ?
15
67/25
128/11
128/99
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
(9.0 / 2 * 27 / 9 ) / (18/7.5 * 5.0 / 4) = ?
Solution |
2
Discuss
|
If \(\left( {x - \frac{1}{x}} \right){ \text{ = }}\sqrt {21} { \text{,}} \) then the value of \(\left( {{x^2} + \frac{1}{{{x^2}}}} \right) \left( {x + \frac{1}{x}} \right)\) is = ?
Solution |
3
Discuss
|
The value (1001)3 is = ?
Solution |
4
Discuss
|
If the expression \({ \text{2}}\frac{1}{2}{ \text{ of }}\frac{3}{4} \times \frac{1}{2} \div \frac{3}{2} + \frac{1}{2} \div \frac{3}{2}\left[ {\frac{2}{3} - \frac{1}{2}{ \text{ of }}\frac{2}{3}} \right]\) is simplified, we get -
Solution |
5
Discuss
|
The value of \(\frac{{25 - 5\left[ {2 + 3\left\{ {2 - 2\left( {5 - 3} \right) + 5} \right\} - 10} \right]}}{4} = ?\)
Solution |
6
Discuss
|
A fires 5 shots to B's 3 but A kills only once in 3 shots while B kills once in 2 shots. When B has missed 27 times, A has killed:
Solution |
7
Discuss
|
If (a+b+2c+3d)(a-b-2c+3d)=(a-b+2c-3d)(a+b-2c-3d), then 2bcis equal to?
Solution |
8
Discuss
|
25 * 3.250 + 50.40 / 24.0 = ?
Solution |
9
Discuss
|
If \(x = \sqrt 3 { \text{ + }}\sqrt 2 { \text{,}} \) then the value of \({x^3} - \frac{1}{{{x^3}}}\) is?
Solution |
10
Discuss
|
(4 / 5) × ? × (3 / 7) = (16 / 105)
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved