Quiz Discussion

The sum of the first and third term of an arithmetic progression is 12 and the product of first and second term is 24, then first term is

Course Name: Quantitative Aptitude

  • 1]

    4

  • 2]

    1

  • 3]

    8

  • 4]

    6

Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

The 2nd and 8th term of an arithmetic progression are 17 and -1 respectively. What is the 14th term?

  • 1]

    -19

  • 2]

    -22

  • 3]

    -20

  • 4]

    -25

Solution
2
Discuss

If the fifth term of a GP is 81 and first term is 16, what will be the 4th term of the GP?

  • 1] 36
  • 2] 18
  • 3] 54
  • 4] 24
  • 5] 27
Solution
3
Discuss

What is the sum of the first 17 terms of an arithmetic progression if the first term is -20 and last term is 28?

  • 1] 68
  • 2] 156
  • 3] 142
  • 4] 242
Solution
4
Discuss

If the 7th term of a H.P. is 1/10 and the 12th term is 1/25, then the 20th term is

  • 1]

    1/41

  • 2]

    1/45

  • 3]

    1/49

  • 4]

    1/37

Solution
5
Discuss

If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are

  • 1] 5, 10, 15, 20
  • 2] 4, 10, 16, 22
  • 3] 3, 7, 11, 15
  • 4] None of these
Solution
6
Discuss

The common difference of the A.P. \(\frac{1}{{2b}} \frac{{1 - 6b}}{{2b}}  \frac{{1 - 12b}}{{2b}}\)   . . . . . is

 

  • 1] 2b
  • 2] -2b
  • 3] 3
  • 4] -3
Solution
7
Discuss

The 7th and 21st terms of an AP are 6 and -22 respectively. Find the 26th term

  • 1] -34
  • 2] -32
  • 3] -12
  • 4] -10
  • 5] -16
Solution
8
Discuss

Find the first term of an AP whose 8th and 12th terms are respectively 39 and 59.

  • 1] 5
  • 2] 6
  • 3] 4
  • 4] 3
  • 5] 7
Solution
9
Discuss

If a + 1, 2a + 1, 4a - 1 are in A.P., then the value of a is:

 

  • 1]

    1

  • 2]

    2

  • 3]

    3

  • 4]

    4

Solution
10
Discuss

A bacteria gives birth to two new bacteria in each second and the life span of each bacteria is 5 seconds. The process of the reproduction is continuous until the death of the bacteria. initially there is one newly born bacteria at time t = 0, the find the total number of live bacteria just after 10 seconds :

  • 1]

    \(\frac{{{3^{10}}}}{2}\)

  • 2]

    310 - 210

  • 3]

    243 × (35 -1)

  • 4]

    310 - 25

  • 5]

    None of these

Solution
# Quiz