Quiz Discussion

If (n + 2)! = 2550 (n!); find ’n’

Course Name: Quantitative Aptitude

  • 1]

    49

  • 2]

    35

  • 3]

    38

  • 4]

    43

Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

A fair coin is tossed 5 times. What is the probability of getting at least three heads on consecutive tosses?

  • 1]

    3/16

  • 2]

    1/4

  • 3]

    7/24

  • 4]

    5/16

Solution
2
Discuss

A committee of 8 members is to be selected from a group of 12 male and 10 female members. In how many ways the committee is selected such that at most two and at least one male member are there in the committee?

  • 1]

    13540

  • 2]

    14200

  • 3]

    15300

  • 4]

    16400

Solution
3
Discuss

The number of triangles that can be formed by choosing the vertices from a set of 12 points, seven of which lie on the same straight line, is

  • 1]

    185

  • 2]

    175

  • 3]

    115

  • 4]

    105

Solution
4
Discuss

A biased coin in tossed thrice. What is the probability that heads turns out at least twice considering that the probability of a head is 60%?

  • 1]

    0.648

  • 2]

    0.234

  • 3]

    0.348

  • 4]

    .839

Solution
5
Discuss

From a group of 7 men and 6 women, five persons are to be selected to form a committee so that at least three men are in the committee. In how many ways can it be done?

  • 1]

    624

  • 2]

    702

  • 3]

    756

  • 4]

    812

Solution
6
Discuss

There are 8 orators A, B, C, D, E, F, G, and H. In how many ways can the arrangements be made so that A always comes before B and B always comes before C.

  • 1]

    8! / 3!

  • 2]

    8! / 6!

  • 3]

    5! x 3!

  • 4]

    8! / (5! x 3!) 

Solution
7
Discuss

12 person are seated at a round table. Number of ways of selecting 2 persons not adjacent to each other is

  • 1]

    10

  • 2]

    11

  • 3]

    54

  • 4]

    48

Solution
8
Discuss

How many four-digit numbers, each divisible by 4 can be formed using the digits 5, 6, 7, 8, 9, repetition of digits being allowed in any number?

  • 1]

    75

  • 2]

    100

  • 3]

    125

  • 4]

    150

Solution
9
Discuss

How many integers between 1000 and 10000 have no digits other than 4, 5, or 6?

  • 1]

    91

  • 2]

    71

  • 3]

    51

  • 4]

    81

Solution
10
Discuss

Seven different objects must be divided among three people. In how many ways can this be done if one or two of them must get no objects?

  • 1]

    36

  • 2]

    84

  • 3]

    180

  • 4]

    381

Solution
# Quiz