The expression \(\frac{1}{{x - 1}} - \frac{1}{{x + 1}} - \frac{2}{{{x^2} + 1}} - \frac{4}{{{x^4} + 1}}\) is equal to = ?
\(\frac{8}{{{x^8} + 1}}\)
\(\frac{8}{{{x^8} - 1}}\)
\(\frac{8}{{{x^7} - 1}}\)
\(\frac{8}{{{x^7} + 1}}\)
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
\(\frac{{20 + 8 \times 0.5}}{{20 - ?}}{ \text{ = 12}}\) Find the value in place of (?)
Solution |
2
Discuss
|
The simplified value of
Solution |
3
Discuss
|
Simplify : \(\root 3 \of { - 2197} \,\times \) \(\root 3 \of { - 125} \,\,\div \) \(\root 3 \of {\frac{{27}}{{512}}} \) = ?
Solution |
4
Discuss
|
The value of \(\frac{5}{{1\frac{7}{8}{ \text{of 1}}\frac{1}{3}}} \times \frac{{2\frac{1}{{10}}}}{{3\frac{1}{2}}}{ \text{ of 1}}\frac{1}{4} = ?\)
Solution |
5
Discuss
|
If \(\left( {x - \frac{1}{x}} \right){ \text{ = }}\sqrt {21} { \text{,}} \) then the value of \(\left( {{x^2} + \frac{1}{{{x^2}}}} \right) \left( {x + \frac{1}{x}} \right)\) is = ?
Solution |
6
Discuss
|
Solve 14 × 627 ÷ \(\sqrt {\left( {1089} \right)} \) = (?)3 + 141
Solution |
7
Discuss
|
3/5 of 4/7 of 5/9 of 21/24 of 504 = ?
Solution |
8
Discuss
|
If \(\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1\) and \(\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0\) where a, b, c, p, q, r are non-zero real numbers, then \(\frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}}\) is equal to = ?
Solution |
9
Discuss
|
If \(x = \sqrt 3 { \text{ + }}\sqrt 2 { \text{,}} \) then the value of \({x^3} - \frac{1}{{{x^3}}}\) is?
Solution |
10
Discuss
|
Let 0 < x < 1, then the correct inequality is = ?
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved