\({ \text{If }}\left( {{n^r} - tn + \frac{1}{4}} \right)\) be a perfect square, then the values of t are = ?
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
If \(\sqrt {{ \text{4096}}}\) = 64, then the value of \(\sqrt {{ \text{40}}{ \text{.96}}}\) + \(\sqrt {{ \text{0}}{ \text{.4096}}}\) + \(\sqrt {{ \text{0}}{ \text{.004096}}}\) + \(\sqrt {{ \text{0}}{ \text{.00004096}}}\) up to two place of decimals is = ?
Solution |
2
Discuss
|
\(\sqrt {\frac{{4\frac{1}{7} - 2\frac{1}{4}}}{{3\frac{1}{2} + 1\frac{1}{7}}} \div \frac{1}{{2 + \frac{1}{{2 + \frac{1}{{5 - \frac{1}{5}}}}}}}} \) is equal to = ?
Solution |
3
Discuss
|
Simplify : \(\sqrt {3 + \frac{{33}}{{64}}} \div \sqrt {9 + \frac{1}{7}} \times 2\sqrt {3\frac{1}{9}}\) = ?
Solution |
4
Discuss
|
\(\frac{1}{{1 + {2^{a - b}}}} + \frac{1}{{1 + {2^{b - a}}}}\) is equal to = ?
Solution |
5
Discuss
|
Supply the two missing figures in order indicated by x and y in the given equation, the fractions being in their lowest terms.
Solution |
6
Discuss
|
\({ \text{If }}\left[ {4 - \frac{5}{{1 + \frac{1}{{3 + \frac{1}{{2 + \frac{1}{4}}}}}}}} \right]\) \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Solution |
7
Discuss
|
\(\sqrt {\frac{{{{\left( {0.03} \right)}^2} + {{\left( {0.21} \right)}^2} + {{\left( {0.065} \right)}^2}}}{{{{\left( {0.003} \right)}^2} + {{\left( {0.021} \right)}^2} + {{\left( {0.0065} \right)}^2}}}}\)
Solution |
8
Discuss
|
Eight people are planning to share equally the cost of a rental car. If one person withdraws from the arrangement and the others share equally the entire cost of the car, then the share of each of the remaining persons increased by:
Solution |
9
Discuss
|
If 37/13 = where x,y,z are natural member , then find x+y+z are:-
Solution |
10
Discuss
|
Simplify : \({ \text{8}}\frac{1}{2} - \left[ {3\frac{1}{4} + \left\{ {1\frac{1}{4} - \frac{1}{2}\left( {1\frac{1}{2} - \frac{1}{3} - \frac{1}{6}} \right)} \right\}} \right]\)
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved