Quiz Discussion

Sum of n terms of the series \(\sqrt 2   +   \sqrt 8   +   \sqrt {18}   +   \sqrt {32}   +  \) ....... is

 

Course Name: Quantitative Aptitude

  • 1]

    \(\frac{{n\left( {n + 1} \right)}}{2}\)

  • 2]

    \(2n\left( {n + 1} \right)\)

  • 3]

    \(\frac{{n\left( {n + 1} \right)}}{{\sqrt 2 }}\)

  • 4]

    1

Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

If the sum of n terms of an A.P. be 3n2 + n and its common difference is 6, then its first term is

  • 1] 2
  • 2] 3
  • 3] 1
  • 4] 4
Solution
2
Discuss

The 2nd and 8th term of an arithmetic progression are 17 and -1 respectively. What is the 14th term?

  • 1]

    -19

  • 2]

    -22

  • 3]

    -20

  • 4]

    -25

Solution
3
Discuss

15th term of A.P., x - 7, x - 2, x + 3, ........ is

  • 1] x + 63
  • 2] x + 73
  • 3] x + 83
  • 4] x + 53
Solution
4
Discuss

The sum of n terms of an A.P. is 3n2 + 5n, then 164 is its

  • 1] 24th term
  • 2] 27th term
  • 3] 26th term
  • 4] 25th term
Solution
5
Discuss

If S1 is the sum of an arithmetic progression of ‘n’ odd number of terms and S2 is the sum of the terms of the series in odd places, then \(\frac{{{S_1}}}{{{S_2}}}\)

 

  • 1]

    \(\frac{{2n}}{{n + 1}}\)

  • 2]

    \(\frac{n}{{n + 1}}\)

  • 3]

    \(\frac{{n + 1}}{{2n}}\)

  • 4]

    \(\frac{{n - 1}}{n}\)

Solution
6
Discuss

If three numbers be in G.P., then their logarithms will be in

  • 1]

    AP

  • 2]

    GP

  • 3]

    HP

  • 4]

     None Of This

Solution
7
Discuss

The 2nd and 6th term of an arithmetic progression are 8 and 20 respectively. What is the 20th term?

  • 1]

    56

  • 2]

    62

  • 3]

    65

  • 4]

    69

Solution
8
Discuss

The 3rd and 7th term of an arithmetic progression are -9 and 11 respectively. What is the 15th term?

  • 1] 28
  • 2] 87
  • 3] 51
  • 4] 17
Solution
9
Discuss

The 4th and 7th term of an arithmetic progression are 11 and -4 respectively. What is the 15th term?

  • 1] -49
  • 2] -44
  • 3] -39
  • 4] -34
Solution
10
Discuss

If the sums of n terms of two arithmetic progressions are in the ratio \(\frac{{3n + 5}}{{5n + 7}}\)   then their nth terms are in the ration

 

  • 1]

    \(\frac{{3n - 1}}{{5n - 1}}\)

  • 2]

    \(\frac{{3n + 1}}{{5n + 1}}\)

  • 3]

    \(\frac{{5n + 1}}{{3n + 1}}\)

  • 4]

    \(\frac{{5n - 1}}{{3n - 1}}\)

Solution
# Quiz