\(\left\{ {\left( {\sqrt {72} - \sqrt {18} } \right) \div \sqrt {12} } \right\}\) is equal to = ?
\(\sqrt 6\)
\(\frac{{\sqrt 3 }}{2}\)
\(\frac{{\sqrt 2 }}{3}\)
\(\frac{{\sqrt 6 }}{2}\)
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
If 12 + 22 + 32 + . . . . . + p2 = \(\left[ {\frac{{{ \text{p}}\left( {{ \text{p}} + 1} \right)\left( {2{ \text{p}} + 1} \right)}}{6}} \right]{ \text{,}}\) then 12 + 32 + 52 + . . . . . + 172 is = ?
Solution |
2
Discuss
|
The simplification of \(\frac{5}{{3 + \frac{3}{{1 - \frac{2}{3}}}}}, = ?\)
Solution |
3
Discuss
|
There are two examinations rooms A and B. If 10 students are sent from A to B, then the number of students in each room is the same. If 20 candidates are sent from B to A, then the number of students in A is double the number of students in B. The number of students in room A is:
Solution |
4
Discuss
|
Simplify : \(\frac{{ - \frac{1}{2} - \frac{2}{3} + \frac{4}{5} - \frac{1}{3} + \frac{1}{5} + \frac{3}{4}}}{{\frac{1}{2} + \frac{2}{3} - \frac{4}{3} + \frac{1}{3} - \frac{1}{5} - \frac{4}{5}}}\)
Solution |
5
Discuss
|
Direction: In the question given below the given mathematical symbols are changed from '+' to '÷', '-' to '×', '÷' to '-' and from '×' to '+', then choose your answers from the following options.
Solution |
6
Discuss
|
Simplify : \({ \text{8}}\frac{1}{2} - \left[ {3\frac{1}{4} + \left\{ {1\frac{1}{4} - \frac{1}{2}\left( {1\frac{1}{2} - \frac{1}{3} - \frac{1}{6}} \right)} \right\}} \right]\)
Solution |
7
Discuss
|
421 ÷ 35 × 299.97 ÷ 25.05 = ?2
Solution |
8
Discuss
|
Simplify : \(\root 3 \of { - 2197} \,\times \) \(\root 3 \of { - 125} \,\,\div \) \(\root 3 \of {\frac{{27}}{{512}}} \) = ?
Solution |
9
Discuss
|
The expression \(\frac{1}{{x - 1}} - \frac{1}{{x + 1}} - \frac{2}{{{x^2} + 1}} - \frac{4}{{{x^4} + 1}}\) is equal to = ?
Solution |
10
Discuss
|
If \(\left( {a + \frac{1}{a}} \right) = 6, then \left( {{a^4} + \frac{1}{{{a^4}}}} \right)\) = ?
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved