Quiz Discussion

The least perfect square number divisible by 3, 4, 5, 6 and 8 is = ?

Course Name: Quantitative Aptitude

  • 1] 900
  • 2] 1200
  • 3] 2500
  • 4] 3600
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

Given \(\sqrt 2 = 1.414.\)   Then the value of \(\sqrt 8\)  + \(2\sqrt {32} \)  -  \(3\sqrt {128}\)  + \(4\sqrt {50}\)   is = ?

 

  • 1] 8.426
  • 2] 8.484
  • 3] 8.526
  • 4] 8.876
Solution
2
Discuss

\(\left( {\frac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }} + \frac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }} + \frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right) \)     simplifies to = ?

 

  • 1]

    \(16 - \sqrt 3 \)

  • 2]

    \(4 - \sqrt 3 \)

  • 3]

    \(2 - \sqrt 3 \)

  • 4]

    \(2 + \sqrt 3 \)

Solution
3
Discuss

If \(\sqrt 2 = 1.414{ \text{,}}   \) the square root of \(\frac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}\)  is nearest to = ?

 

  • 1] 0.172
  • 2] 0.414
  • 3] 0.586
  • 4] 1.414
Solution
4
Discuss

\(99 \times 21 - \root 3 \of ? = 1968\)

 

  • 1] 1367631
  • 2] 111
  • 3] 1366731
  • 4] 1367
Solution
5
Discuss

Given \(\sqrt 5 = 2.2361,   \sqrt 3 = 1.7321{ \text{,}}   then \frac{1}{{\sqrt 5 - \sqrt 3 }}\)   is equal to ?

 

  • 1] 1.98
  • 2] 1.984
  • 3] 1.9841
  • 4] 2
Solution
6
Discuss

How many perfect squares lie between 120 and 300 ?

  • 1] 5
  • 2] 6
  • 3] 7
  • 4] 8
Solution
7
Discuss

While solving a mathematical problem, Samidha squared a number and then subtracted 25 from it rather than the required i.e., first subtracting 25 from the number and then squaring it. But she got the right answer. What was the given number ?

  • 1] 13
  • 2] 38
  • 3] 48
  • 4] Cannot be determined
  • 5] None of these
Solution
8
Discuss

The square root of 41209 is equal to = ?

  • 1] 103
  • 2] 203
  • 3] 303
  • 4] 403
Solution
9
Discuss

The number of perfect square numbers between 50 and 1000 is = ?

  • 1] 21
  • 2] 22
  • 3] 23
  • 4] 24
Solution
10
Discuss

The value of \(\frac{{1 + \sqrt {0.01} }}{{1 - \sqrt {0.1} }}\)   is close to = ?

 

  • 1] 0.6
  • 2] 1.1
  • 3] 1.6
  • 4] 1.7
Solution
# Quiz