Quiz Discussion

The square root of 123454321 is = ?

Course Name: Quantitative Aptitude

  • 1] 111111
  • 2] 12341
  • 3] 11111
  • 4] 11211
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

One-fourth of the sum of prime numbers, greater than 4 but less than 16, is the square of = ?

  • 1] 3
  • 2] 4
  • 3] 5
  • 4] 7
Solution
2
Discuss

R is a positive number. It is multiplied by 8 and then squared. The square is now divided by 4 and the square root is taken. The result of the square root is Q. What is the value of Q ?

  • 1] 3R
  • 2] 4R
  • 3] 7R
  • 4] 9R
Solution
3
Discuss

Given that \(\sqrt {13} = 3.605\)   and \(\sqrt {130} = 11.40\)  . find the value of \(\sqrt {1.30} \)  + \(\sqrt {1300}\)  + \(\sqrt {0.0130} \)   = ?

 

  • 1] 36.164
  • 2] 36.304
  • 3] 37.164
  • 4] 37.304
Solution
4
Discuss

\(\sqrt {\frac{{16}}{{25}}} \times \sqrt {\frac{?}{{25}}} \times \frac{{16}}{{25}} = \frac{{256}}{{625}}\)

 

  • 1] 5
  • 2] 8
  • 3] 16
  • 4] None of these
Solution
5
Discuss

\(\sqrt {11881} \times \sqrt ? = 10137\)

 

  • 1] 8281
  • 2] 8649
  • 3] 9216
  • 4] 9409
  • 5] None of these
Solution
6
Discuss

Given that \(\sqrt 3 = 1.732{ \text{,}}   \)  the value of \(\frac{{3 + \sqrt 6 }}{{5\sqrt 3 - 2\sqrt {12} - \sqrt {32} + \sqrt {50} }}\)    is ?

 

  • 1] 1.414
  • 2] 1.732
  • 3] 2.551
  • 4] 4.899
Solution
7
Discuss

Solved \( \root 4 \of {{{\left( {625} \right)}^3}} = ?\)

 

  • 1]

    \( \root 3 \of {1875} \)

  • 2]

    25

  • 3]

    125

  • 4]

    None of these

Solution
8
Discuss

If \(x = 3 + \sqrt 8 ,   \) then \({x^2} + \frac{1}{{{x^2}}}\) is equal to = ?

 

  • 1] 30
  • 2] 34
  • 3] 36
  • 4] 38
Solution
9
Discuss

Find the square root of 3 upto three decimal places

  • 1]

    1.732

  • 2]

    2.732

  • 3]

    1.222

  • 4]

    1.414

Solution
10
Discuss

\(\sqrt {1.5625} = ?\)

 

  • 1] 1.05
  • 2] 1.25
  • 3] 1.45
  • 4] 1.55
Solution
# Quiz