Simplify : \(\sqrt {3 + \frac{{33}}{{64}}} \div \sqrt {9 + \frac{1}{7}} \times 2\sqrt {3\frac{1}{9}}\) = ?
45/256
\(1\frac{{17}}{{28}}\)
\(4\frac{3}{8}\)
\(2\frac{3}{{16}}\)
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
\(\frac{3}{2} \times \frac{{11}}{5} \div \left( {\frac{{25}}{{44}} \times \frac{{11}}{5}} \right) \div \frac{{33}}{{15}} = ?\)
Solution |
2
Discuss
|
98643 – 21748 = 51212 + ?
Solution |
3
Discuss
|
Let 0 < x < 1, then the correct inequality is = ?
Solution |
4
Discuss
|
The value of \(\frac{{{x^2} - {{\left( {y - z} \right)}^2}}}{{{{\left( {x + z} \right)}^2} - {y^2}}}{ \text{ + }}\frac{{{y^2} - {{\left( {x - z} \right)}^2}}}{{{{\left( {x + y} \right)}^2} - {z^2}}} +\frac{{{z^2} - {{\left( {x - y} \right)}^2}}}{{{{\left( {y + z} \right)}^2} - {x^2}}}\) is = ?
Solution |
5
Discuss
|
Simplify : \(1 + {2 \over {1 + {3 \over {1 + {4 \over 5}}}}}\)
Solution |
6
Discuss
|
If \(\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1\) and \(\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0\) where a, b, c, p, q, r are non-zero real numbers, then \(\frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}}\) is equal to = ?
Solution |
7
Discuss
|
\(\sqrt {0.00060516} \) is equal to = ?
Solution |
8
Discuss
|
If \(\root 3 \of {{3^n}} { \text{ = 27,}}\) then the value of n is = ?
Solution |
9
Discuss
|
\({{{{(469 + 174)}^2} - {{(469 - 174)}^2}} \over {(469 \times 174)}} = ?\)
Solution |
10
Discuss
|
The value of \(\frac{5}{{1\frac{7}{8}{ \text{of 1}}\frac{1}{3}}} \times \frac{{2\frac{1}{{10}}}}{{3\frac{1}{2}}}{ \text{ of 1}}\frac{1}{4} = ?\)
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved